Chitosan is known for its specific antibacterial mechanism and biodegradability, while polyphenols are known for their antioxidant and anti-inflammatory properties: coupling these properties on a surface for bone contact, such as hydroxyapatite, is of great interest. The system developed here allows the combination of hydroxyapatite, chitosan, and polyphenol properties in the same multifunctional biomaterial in order to modulate the host response after implantation. Crosslinked chitosan is used in this research to create a stable coating on hydroxyapatite, and then it is functionalized for a smart release of the polyphenols. The release is higher in inflammatory conditions and lower in physiological conditions. The properties of the coated and functionalized samples are characterized on the as-prepared samples and after the samples are immersed (for 24 h) in solutions, which simulate the inflammatory and physiological conditions. Characterization is performed in order to confirm the presence of polyphenols grafted within the chitosan coating, the stability of grafting as a function of pH, the morphology of the coating and distribution of polyphenols on the surface, and the redox reactivity and radical scavenging activity of the functionalized coating. All the results are in line with previous results, which show a successful coating with chitosan and functionalization with polyphenols. Moreover, the polyphenols have a different release kinetics that is faster in a simulated inflammatory environment compared to that in the physiological environment. Even after the release tests, a fraction of polyphenols are still bound on the surface, maintaining the antioxidant and radical scavenging activity for a longer time. An electrostatic bond occurs between the negative-charged polar groups of polyphenols (carboxyls and/or phenols) and the positive amide groups of the chitosan coating, and the substitution of the crosslinker by the polyphenols occurs during the functionalization process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717632 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.1c01930 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department of Traditional Chinese Medicine, Zigong First People's Hospital, Zigong, Sichuan, China.
Background: The effects of resveratrol supplementation on inflammation and oxidative stress in patients with type 2 diabetes mellitus (T2DM) were controversial. A meta-analysis was performed to assess the changes in levels of inflammation and oxidative stress in patients with T2DM.
Methods: Relevant literatures before November 6, 2024 were screened through Web of Science,Embase,the Cochrane Library and other sources (ClinicalTrials, ProQuest Dissertations and Theses).
Front Pharmacol
January 2025
Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China.
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects.
View Article and Find Full Text PDFCurr Vasc Pharmacol
January 2025
Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Resveratrol [RES] is a polyphenolic stilbene with therapeutic potential owing to its antioxidant, anti-inflammatory, neuroprotective, and cardioprotective properties. However, the very poor oral bioavailability, fast metabolism, and extremely low stability under physiological conditions pose a severe detriment to the clinical use of RES. This newly developed field of nanotechnology has led to the formulation of RES into nanoformulations with the goal of overcoming metabolicpharmacokinetic limitations and enhancing the targeted transport of RES to the central nervous system [CNS].
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!