Robust air-stable cyclometalated π-allyliridium ,-benzoates modified by ()-tol-BINAP catalyze the reaction of secondary aliphatic amines with racemic alkyl-substituted allylic acetates to furnish products of allylic amination with high levels of enantioselectivity. Complete branched regioselectivities were observed despite the formation of more highly substituted C-N bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764998 | PMC |
http://dx.doi.org/10.1021/acs.orglett.1c04135 | DOI Listing |
Org Lett
January 2025
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Highly stereo- and enantioselective synthesis of δ-alkyl-substituted ()-homoallylic alcohols via asymmetric allylation is developed. In the presence of a chiral phosphoric acid catalyst, allylation of aldehydes with α-substituted allylboronates provides δ-alkyl-substituted homoallylic alcohols with excellent ()-selectivities and enantioselectivities.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
Allylic diboronates are highly valuable reagents in organic synthesis. Existing methods predominantly yield alkyl-substituted allylic diboronates, while the incorporation of electrophilic carbonyl groups conjugated to these allylic systems remains unknown. We present a strain-release promoted cycloaddition-based strategy that enabled access to unprecedented carbonyl conjugated secondary allylic diborons.
View Article and Find Full Text PDFChemistry
December 2024
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK.
Precise control of selective alkene functionalization is a continuing challenge in the chemical community. In this study, we develop a substitution-controlled regiodivergent thioetherification of di- or trisubstituted alkenes using 10 mol % tris(pentafluorophenyl)borane [B(CF)] as a catalyst and N-thiosuccinimide as a sulfenylating reagent. This metal-free borane catalyzed C-S bond forming method is utilized for a Csp-H sulfenylation reaction to synthesize an array of diphenylvinylsulfide derivatives with good to excellent yields (25 examples, up to 91 % yield).
View Article and Find Full Text PDFOrg Biomol Chem
November 2024
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
We report herein a transition-metal-free two-fold reductive coupling between prenal (allyl) tosylhydrazone and boronic acids/1,3-borotropic shift cascade to furnish 1,4-skipped dienes. In this work, a single batch operation produces (,)-1,4-skipped dienes by undergoing a second reductive coupling of the transient boronic acid, which developed following the first reductive allylation and a cascade 1,3-boron migration. Remarkably, the protocol is compatible with various aryl- and alkyl-substituted boronic acids, is scalable and has demonstrated on 61 substrates with yields up to 98%.
View Article and Find Full Text PDFOrg Lett
October 2024
New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
An efficient Ir-catalyzed asymmetric allylic amination reaction of alkyl-substituted allylic carbonates is disclosed. With the Krische iridium complex as the catalyst, asymmetric allylic amination of alkyl-substituted allylic carbonates with pyridones proceeds effectively, affording pyridone derivatives containing a stereocenter α to the nitrogen atom in excellent yields and enantioselectivity (up to 99% yield, 95% ee). This catalytic system broadens the substrate scope of the reaction compared with that of the known catalytic systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!