Machine learning (ML) algorithms have been used to forecast clinical outcomes or drug adverse effects by analyzing different data sets such as electronic health records, diagnostic data, and molecular data. However, ML implementation in phase I clinical trial is still an unexplored strategy that implies challenges such as the selection of the best development strategy when dealing with limited sample size. In the attempt to better define prechemotherapy baseline clinical and biomolecular predictors of drug toxicity, we trained and compared five ML algorithms starting from clinical, blood biochemistry, and genotype data derived from a previous phase Ib study aimed to define the maximum tolerated dose of irinotecan (FOLFIRI (folinic acid, fluorouracil, and irinotecan) plus bevacizumab regimen) in patients with metastatic colorectal cancer. During cross-validation the Random Forest algorithm achieved the best performance with a mean Matthews correlation coefficient of 0.549 and a mean accuracy of 80.4%; the best predictors of dose-limiting toxicity at baseline were hemoglobin, serum glutamic oxaloacetic transaminase (SGOT), and albumin. The feasibility of a prediction model prototype was in principle assessed using the two distinct dose escalation cohorts, where in the validation cohort the model scored a Matthews correlation coefficient of 0.59 and an accuracy of 82.0%. Moreover, we found a strong relationship between SGOT and irinotecan pharmacokinetics, suggesting its role as surrogates' estimators of the irinotecan metabolism equilibrium. In conclusion, the potential application of ML techniques to phase I study could provide clinicians with early prediction tools useful both to ameliorate the management of clinical trials and to make more adequate treatment decisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cpt.2511 | DOI Listing |
J Chem Inf Model
January 2025
School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.
View Article and Find Full Text PDFJ Occup Health
January 2025
Panasonic Corporation, Department Electric Works Company/Engineering Division, Osaka, Japan.
Background: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fall risk prediction model using machine learning (ML) and video-based first three steps in middle-aged workers.
Methods: Train data (n=190, age 54.
Esophagus
January 2025
Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy.
View Article and Find Full Text PDFCurr Res Transl Med
January 2025
Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.
This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!