Background: Compelling evidence suggests that glioblastoma (GBM) recurrence results from the expansion of a subset of tumor cells with robust intrinsic or therapy-induced radioresistance. However, the mechanisms underlying GBM radioresistance and recurrence remain elusive. To overcome obstacles in radioresistance research, we present a novel preclinical model ideally suited for radiobiological studies.

Methods: With this model, we performed a screen and identified a radiation-tolerant persister (RTP) subpopulation. RNA sequencing was performed on RTP and parental cells to obtain mRNA and miRNA expression profiles. The regulatory mechanisms among NF-κB, YY1, miR-103a, XRCC3, and FGF2 were investigated by transcription factor activation profiling array analysis, chromatin immunoprecipitation, western blot analysis, luciferase reporter assays, and the MirTrap system. Transferrin-functionalized nanoparticles (Tf-NPs) were employed to improve blood-brain barrier permeability and RTP targeting.

Results: RTP cells drive radioresistance by preferentially activating DNA damage repair and promoting stemness. Mechanistic investigations showed that continual radiation activates the NF-κB signaling cascade and promotes nuclear translocation of p65, leading to enhanced expression of YY1, the transcription factor that directly suppresses miR-103a transcription. Restoring miR-103a expression under these conditions suppressed the FGF2-XRCC3 axis and decreased the radioresistance capability. Moreover, Tf-NPs improved radiosensitivity and provided a significant survival benefit.

Conclusions: We suggest that the NF-κB-YY1-miR-103a regulatory axis is indispensable for the function of RTP cells in driving radioresistance and recurrence. Thus, our results identified a novel strategy for improving survival in patients with recurrent/refractory GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248405PMC
http://dx.doi.org/10.1093/neuonc/noab288DOI Listing

Publication Analysis

Top Keywords

radioresistance recurrence
12
radiation-tolerant persister
8
transcription factor
8
rtp cells
8
radioresistance
7
cells
5
rtp
5
targeting radiation-tolerant
4
persister cells
4
cells strategy
4

Similar Publications

Oncolytic measles virus-induced cell killing in radio-resistant and drug-resistant nasopharyngeal carcinoma.

Malays J Pathol

December 2024

Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.

Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.

View Article and Find Full Text PDF

Radiotherapy-immunomodulated nanoplatform triggers both hypoxic and normoxic tumor associated antigens generation for robust abscopal effect and sustained immune memory.

Biomaterials

May 2025

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Radiotherapy (RT) induced abscopal effect has garnered substantial attention, nevertheless, it is rarely observed in clinics, due to the tumor hypoxia-related radioresistance, inadequate immune stimulation, and immunosuppressive tumor microenvironment. Herein, we construct a radiotherapy-immunomodulated nanoplatform (THUNDER), which synergizes with RT and greatly triggers the generation of both hypoxic and normoxic tumor cells-derived tumor-associated antigens (TAAs), resulting in robust abscopal effect and sustained immune memory. THUNDER exhibits prolonged blood circulation and high tumor retention capacity.

View Article and Find Full Text PDF

Proteomic Profiling of Pre- and Post-Surgery Saliva of Glioblastoma Patients: A Pilot Investigation.

Int J Mol Sci

December 2024

Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy.

Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the molecular profile of pre- and post-operative saliva pools from newly diagnosed (ND) GBM patients by comparing different times of collection and tumor recurrence (R).

View Article and Find Full Text PDF

Radioresistance in esophageal squamous cell carcinoma (ESCC) is a critical factor leading to treatment failure and recurrence, yet its underlying molecular mechanisms remain unclear. This study aimed to investigate the role of Replication Factor C4 (RFC4) in ESCC radioresistance and to explore the underlying mechanisms. We utilized online bioinformatics tools to analyze the properties, functions, and prognostic significance of RFC4 in ESCC.

View Article and Find Full Text PDF

Radiation therapy represents the primary treatment option for triple-negative breast cancer. However, radio resistance is associated with a poor prognosis and an increased risk of recurrence. Radioresistant MDA-MB-231 cells, a radioresistant triple-negative breast cancer cell line, were co-treated with ortho-topolin riboside and melatonin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!