Development of drugs and cosmetics for topical application require safety tests in skin models. However, current skin models, such as skin cell sheets and artificial tissue-engineered skin, do not allow sophisticated toxicological evaluations (, sensory irritation, hepatotoxicity). Animal models are prohibited worldwide for testing cosmetics. Therefore, reliable human skin models that recapitulate physiological events in skin tissue need to be established under settings. In this study, hybrid human skin models that enable delicate toxicological evaluations of drugs and cosmetic compounds are demonstrated. To recapitulate skin cornification, keratinocytes in the top layer of a vertical microfluidic chip were cultured at the air-liquid interface. For the skin-nerve hybrid model, differentiated neural stem cells in 3D collagen were positioned adjacent to and right below the skin layer. This model enables real-time quantitative skin sensitization analysis following chemical treatments by detecting alterations in neuronal activity in combination with a calcium imaging technique. For the skin-liver model, hepatic cells derived from pluripotent stem cells were cultured in 3D collagen distant from the skin layer. Potential hepatotoxicity of cutaneously applied chemicals in this model can be evaluated by quantification of glutathione and reactive oxygen species. Our study suggests that 3D hybrid skin chips would provide useful human skin models in pharmaceutical and cosmetic industries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1lc00550bDOI Listing

Publication Analysis

Top Keywords

skin models
20
skin
13
human skin
12
hybrid skin
8
skin chips
8
drugs cosmetic
8
cosmetic compounds
8
toxicological evaluations
8
stem cells
8
skin layer
8

Similar Publications

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Background: The removal of preformed antibodies with cleaving enzyme like IdeS (Imlifidase) has demonstrated therapeutic potential in organ transplantation for sensitized recipients. However, preformed xenoreactive antibodies (XAbs) against porcine glycans are predominantly IgM and considered detrimental in pig-to-human xenotransplantation.

Methods: Recombinant IceM, an endopeptidase cleaving IgM, was generated in Escherichia coli.

View Article and Find Full Text PDF

Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Intracellular, free-floating and biofilm-forming bacterial pathogens have been implicated in summer mortality of farmed Chinook salmon, Oncorhynchus tshawytscha, in New Zealand. A mortality event in 2022 in the Pelorus Sound, Marlborough, was linked to high water temperatures (> 18°C), and bacterial skin disease associated with Piscirickettsia spp. (=Rickettsia-like organisms) and Tenacibaculum species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!