Platelet-rich plasma (PRP) is a blood product that contains several growth factors and active proteins. PRP is thought to be used autologously to assist in the repair of injured tissues as well as to treat pain at the site of injury. The mechanism behind PRP in regenerative medicine has been well investigated and includes the identification and concentration of released growth factors and exosomes. The benefits of PRP have been highly recommended and are used widely in orthopaedics and sports medicine, including repair of injured skeletal muscle. This current report summarizes some of the more recent studies in the use of PRP as it relates to muscle healing, in both the in vitro and clinical arenas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/03635465211061606 | DOI Listing |
Biomater Adv
December 2024
College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:
In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopedics and Rehabilitation, Tufts Medical Center, Boston, Massachusetts, USA.
Background: The Minimum Information for Studies Evaluating Biologics in Orthopedics (MIBO) guidelines were developed in May 2017 to encourage improved reporting standards, promote increased transparency and reproducibility, and enhance clinical evaluation capabilities. The MIBO guidelines consist of 23 checklist items considered necessary to critically appraise clinical studies evaluating platelet-rich plasma (PRP).
Purpose: To assess randomized controlled trials that evaluated PRP for the treatment of knee osteoarthritis in order to systematically review their adherence to the MIBO guidelines.
BMC Musculoskelet Disord
January 2025
Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
Background: Osteonecrosis of the femoral head (ONFH) is a challenging condition, primarily affecting young and middle-aged individuals, which results in hip dysfunction and, ultimately, femoral head collapse. However, the comparative effectiveness of joint-preserving procedures, particularly in the early stages of ONFH (ARCO stage I or II), remains inconclusive. This study aims to evaluate the efficacy of a novel technique called small-diameter core decompression (CD) combined with platelet-rich plasma (PRP), for the treatment of early-stage ONFH.
View Article and Find Full Text PDFClin Proteomics
January 2025
Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 1, 00168, Rome, Italy.
Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!