Owing to its high energy density, LiNiCoMnO (NMC811) is a cathode material of prime interest for electric vehicle battery manufacturers. However, NMC811 suffers from several irreversible parasitic reactions that lead to severe capacity fading and impedance buildup during prolonged cycling. Thin surface protection films coated on the cathode material mitigate degradative chemomechanical reactions at the electrode-electrolyte interphase, which helps to increase cycling stability. However, these coatings may impede the diffusion of lithium ions, and therefore, limit the performance of the cathode material at a high C-rate. Herein, we report on the synthesis of zirconium phosphate (ZrPO) and lithium-containing zirconium phosphate (LiZrPO) coatings as artificial cathode-electrolyte interphases (ACEIs) on NMC811 using the atomic layer deposition technique. Upon prolonged cycling, the ZrPO- and LiZrPO-coated NMC811 samples show 36.4 and 49.4% enhanced capacity retention, respectively, compared with the uncoated NMC811. Moreover, the addition of Li ions to the LiZrPO coating enhances the rate performance and initial discharge capacity in comparison to the ZrPO-coated and uncoated samples. Using online electrochemical mass spectroscopy, we show that the coated ACEIs largely suppress the degradative parasitic side reactions observed with the uncoated NMC811 sample. Our study demonstrates that providing extra lithium to the ACEI layer improves the cycling stability of the NMC811 cathode material without sacrificing its rate capability performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c16373DOI Listing

Publication Analysis

Top Keywords

cathode material
16
zirconium phosphate
12
atomic layer
8
layer deposition
8
nmc811 cathode
8
prolonged cycling
8
cycling stability
8
uncoated nmc811
8
nmc811
7
improvement electrochemical
4

Similar Publications

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Background: Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.

Objective: The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.

View Article and Find Full Text PDF

Automated electrochemical oxygen sensing using a 3D-printed microfluidic lab-on-a-chip system.

Lab Chip

January 2025

Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.

Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).

View Article and Find Full Text PDF

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

Small Intestinal Slow Wave Dysrhythmia and Blunted Postprandial Responses in Diabetic Rats.

Neurogastroenterol Motil

January 2025

Division of Gastroenterology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.

Background: Gastric dysmotility and gastric slow wave dysrhythmias have been well documented in patients with diabetes. However, little is known on the effect of hyperglycemia on small intestine motility, such as intestinal slow waves, due to limited options in measuring its activity. Moreover, food intake and digestion process have been reported to alter the small intestine motility in normal rats, but their roles in that of diabetic rats remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!