Integrated, Integral, and Exploratory Biomarkers in the Development of Poly(ADP-Ribose) Polymerase Inhibitors.

Cancer J

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.

Published: February 2022

In this article, we highlight biomarkers for poly(ADP-ribose) polymerase inhibitor (PARPi) sensitivity and resistance and discuss their implications for the clinic. We review the predictive role of a range of DNA repair genes, genomic scars, mutational signatures, and functional assays available or in development. The biomarkers used for patient selection in the specific Food and Drug Administration-approved indications for breast, ovarian, prostate, and pancreatic cancer vary across tumor type and likely depend on disease-specific DNA repair deficiencies but also the specifics of the individual clinical trials that were conducted. Mutations in genes involved in homologous recombination and/or replication fork protection are synthetic lethal with PARPi. Cancers with homologous recombination deficiency exhibit high genomic instability, characterized by genome-wide loss of heterozygosity, among other genomic aberrations. Next-generation sequencing can identify multiple patterns of genomic changes including copy number variations, single-nucleotide variations, insertions/deletions, and structural variations rearrangements characteristic of homologous recombination deficiency. Clinical trial evidence supports the use of BRCA mutation testing for patient selection, and for ovarian cancer, there are 3 commercial assays available that additionally incorporate genomic instability for identifying subgroups of patients that derive different magnitudes of benefit from PARPi therapy. Finally, we summarize new strategies for extending the benefit of PARPi therapy toward broader populations of patients through the use of novel biomarkers. Ultimately, design of a composite biomarker test combining multiple mutational signatures or development of a dynamic assay for functional assessments of homologous recombination may help improve the test accuracy for future patient stratification.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PPO.0000000000000564DOI Listing

Publication Analysis

Top Keywords

homologous recombination
16
polyadp-ribose polymerase
8
dna repair
8
mutational signatures
8
patient selection
8
recombination deficiency
8
genomic instability
8
benefit parpi
8
parpi therapy
8
genomic
5

Similar Publications

Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers.

View Article and Find Full Text PDF

RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!