We focus on a series of protic ionic liquids (PILs) with imidazolium and alkylimidazolium (1R3HIm, R=methyl, ethyl, propyl, and butyl) cations. Using the literature data and our experimental results on the thermal and transport properties, we analyze the effects of the anion nature and the alkyl radical length in the cation structure on the above properties. DFT calculations in gas and solvent phase provide further microscopic insights into the structure and cation-anion binding in these PILs. We show that the higher thermodynamic stability of an ion pair raises the PIL decomposition temperature. The melting points of the salts with the same cation decrease as the hydrocarbon radical in the cation becomes longer, which correlates with the weaker ion-ion interaction inthe ion pairs. A comparative analysis of the protic ILs and corresponding ILs (1R3MeIm) with the same radical (R) in the cation structure and the same anion has been performed. The lower melting points of the ILs with 1R3MeIm cations are assumed to result from the weakening of both the ion-ion interaction and the hydrogen bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202100772 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad 121006, India.
Binary ionic melts formed by a protic ionic liquid (PIL) 1,2,4-triazolium methanesulfonate ([TAZ][MS]) dissolved in methanesulfonic acid are studied as non-stoichiometric electrolytes. The composition-driven structure-property relationship of methanesulfonic acid is explored at varying molar fraction ratios from 0/100 to 10/90, 20/80, and 30/70 by the addition of 1,2,4-triazolium methanesulfonate [TAZ][MS] IL. To unveil molecular characteristics of these mixtures of [TAZ][MS] PIL and CHSOH, we performed classical molecular dynamics simulations at varying temperatures from 293 to 303, 363, and 423 K.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
As a predictive tool, quantum chemical calculations can be used to design protic ionic liquids (PILs) and predict the result. By adding anionic negative potential sites, two dual-functional PILs diethylenetriamine-barbituric acid [CHN][CHNO] and diethylenetriamine-ethylenolactonium [CHN][CHNO] were designed. The simulation results indicated that multisite absorption of anions and cations resulted in an expected absorption ratio exceeding 3:1 (mol CO:mol ILs).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.
View Article and Find Full Text PDFChemistryOpen
January 2025
Energy engineering, Division of Energy Science, Luleå, University of Technology, 97187, Luleå, Sweden.
We report the synthesis of two pyridinium-based room temperature protic ionic liquids (PILs), pyridinium bisulfate, [HPyr][HSO] and pyridinium sulphate, [HPyr][SO] and investigation of the kinetics of their water sorption behaviour and its influence on their density, ionic conductivity, and potential windows. The PILs were synthesized by the reaction of pyridine base with an acid, HSO, under solventless conditions, and confirmed by FTIR spectroscopy and 1H NMR spectra. The appearance vibration bands in the 3095-3252 cm range for -NH stretching in the FTIR spectra and a peak at a chemical shift of 8.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium.
The glass transition dynamics and conductivity relaxation are studied for a series of non-stoichiometric protic ionic liquids (PILs) based on 2-aminoethyl hydrogen sulfate and triflic acid with varying molar ratios (denoted as AT-55, AT-46, AT-37, AT-28, and AT-19) by broadband dielectric spectroscopy in a wide frequency (10-1-107 Hz) and temperature range (173-353 K). The results indicate that the addition of acid lowers the glass transition temperature, as confirmed by the activation energy fine structure analysis and a crossover in the conductivity relaxation time. Notably, samples with higher acid content deliver markedly increased conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!