Goose fatty liver is a specific type of nonalcoholic fatty liver that is protected from harmful effects associated with severe steatosis. Our previous findings suggest that suppression of the complement C5 may be relevant, but the mechanism is unclear. Therefore, in this study, we first verified the expression pattern of complement genes (including C5) during goose fatty liver formation and then determined the liver fat content and fatty acid composition by high-performance liquid chromatography (HPLC), followed by selecting the differential metabolites to treat HepG2, goose and mouse primary hepatocytes, aiming to explore the mechanism of C5 and inflammation suppression in goose fatty liver. The data confirmed the suppression of complement genes (including C5) in goose fatty livers. Moreover, fat content was significantly higher in fatty liver versus normal ones, with oleic acid and palmitic acid dominantly accounting for the difference. In line with this, high concentration of palmitate led to down regulation of C5 expression in goose primary hepatocytes whereas upregulation in mouse primary hepatocytes and HepG2 cells. In conclusion, regulation on C5 expression by fatty liver related factors including high level of palmitic acid may contribute to the protection of goose liver from severe hepatic steatosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/asj.13672 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Department of Endocrinology and Metabolism, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, China.
Aims And Objectives: This study aimed to explore the relationship between HERC6- associated immune response and Non-Alcoholic Fatty Liver Disease (NAFLD) and to screen drug candidates for novel treatments.
Materials And Methods: Mendelian Randomization (MR) was performed to test the relationship between a genetically predicted increase in HERC6 expression and the development of NAFLD. A single-cell RNA-seq profile of liver tissue with histological characteristics (GSE168933) was obtained.
Curr Med Chem
January 2025
Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes.
View Article and Find Full Text PDFIndian Pediatr
January 2025
Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
Liver Int
February 2025
Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA.
J Neurosci Res
January 2025
Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India.
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!