Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940654PMC
http://dx.doi.org/10.1002/jbmr.4480DOI Listing

Publication Analysis

Top Keywords

bone
8
bone loss
8
ovarian cancer
8
skeletal muscle
8
mice bearing
8
muscle mass
8
cachexia
6
muscle
6
rankl
5
rankl blockade
4

Similar Publications

The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease.

J Cancer Res Ther

December 2024

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most important methods for treating a wide range of hematologic malignancies and bone marrow failure diseases. However, graft-versus-host disease (GVHD), a major complication associated with this method, can seriously affect the survival and quality of life of patients. Acute GVHD (aGVHD) occurs within 100 days after transplantation, and gastrointestinal aGVHD (GI-aGVHD) is one of the leading causes of nonrecurrent death after allo-HSCT.

View Article and Find Full Text PDF

Importance: Data characterizing the severity and changing prevalence of bone mineral density (BMD) deficits and associated nonfracture consequences among childhood cancer survivors decades after treatment are lacking.

Objective: To evaluate risk for moderate and severe BMD deficits in survivors and to identify long-term consequences of BMD deficits.

Design, Setting, And Participants: This cohort study used cross-sectional and longitudinal data from the St Jude Lifetime (SJLIFE) cohort, a retrospectively constructed cohort with prospective follow-up.

View Article and Find Full Text PDF

Background: The rising incidence of kidney stones underscores the imperative to devise effective preventive measures. While a robust association between cardiovascular disease (CVD) and kidney stones exists, the current research landscape lacks investigations between cardiovascular health (CVH) and kidney stones. This study aims to explore the association between CVH, assessed by Life's Essential 8 (LE8), and kidney stones, with the role of blood lipids and insulin resistance in this relationship.

View Article and Find Full Text PDF

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!