Copy number variants (CNVs) are genomic structural variations that contribute to many adaptive and economically important traits in livestock. In this study, we detected CNVs in 354 animals from 16 Russian indigenous sheep breeds and analysed their possible functional roles. Our analysis of the entire sample set resulted in 4527 CNVs forming 1450 CNV regions (CNVRs). When constructing CNVRs for individual breeds, a total of 2715 regions ranging from 88 in Groznensk to 337 in Osetin breeds were identified. To make interbreed CNVR frequency comparison possible, we also identified core CNVRs using CNVs with overlapping chromosomal locations found in different breeds. This resulted in 137 interbreed CNVRs with frequency >15% in at least one breed. Functional enrichment analysis of genes affected by CNVRs in individual breeds revealed 12 breeds with significant enrichments in olfactory perception, PRAME family proteins, and immune response. Function of genes affected by interbreed and breed-specific CNVRs revealed candidates related to domestication, adaptation to high altitudes and cold climates, reproduction, parasite resistance, milk and meat qualities, wool traits, fat storage, and fat metabolism. Our work is the first attempt to uncover and characterise the CNV makeup of Russian indigenous sheep breeds. Further experimental and functional validation of CNVRs would help in developing new and improving existing sheep breeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/age.13163 | DOI Listing |
Brief Bioinform
November 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
Nonadditive genetic effects pose significant challenges to traditional genomic selection methods for quantitative traits. Machine learning approaches, particularly kernel-based methods, offer promising solutions to overcome these limitations. In this study, we developed a novel machine learning method, KPRR, which integrated a polynomial kernel into ridge regression to effectively capture nonadditive genetic effects.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE.
The Targhee breed is important to range sheep production in the Western United States. The objective of this research was to integrate industry sires participating in national genetic evaluation through the National Sheep Improvement Program (NSIP) into the U.S.
View Article and Find Full Text PDFFront Genet
December 2024
Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Introduction: Identifying genomic regions under selection is the most challenging issue for improving important traits in animals. Few studies have focused on identifying genomic regions under selection in sheep. The aim of this study was to identify selective sweeps and to explore the relationship between these and quantitative trait loci (QTL) in both domestic and wild sheep species using single nucleotide polymorphism markers (SNPs).
View Article and Find Full Text PDFRes Vet Sci
December 2024
Department of Veterinary Sciences, University of Pisa, Viale delle Piagge, 2, 56124 Pisa, Italy; Department of Veterinary Sciences, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy. Electronic address:
Metronidazole (MTZ) is a 5-nitroimidazole compound recognized for its dual anti-bacterial and anti-protozoal properties. Non-approved in many countries for farm medicine, due to a lack of data in the literature, the study aimed to determine its pharmacokinetics (PK) in sheep and goats following intravenous (IV) and subcutaneous (SC) administrations. Sheep (n = 5) and goats (n = 5) followed identical study protocols, which involved a two-phase, single-dose (2 mg/kg), cross-over study design with a one-week washout period between treatments.
View Article and Find Full Text PDFImeta
December 2024
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Afairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou China.
Comprehensive functional genome annotation is crucial to elucidate the molecular mechanisms of agronomic traits in livestock, yet systematic functional annotation of the sheep genome is lacking. Here, we generated 92 transcriptomic and epigenomic data sets from nine major tissues, along with whole-genome data from 2357 individuals across 29 breeds worldwide, and 4006 phenotypic data related to tail fat weight. We constructed the first multi-tissue epigenome atlas in terms of functional elements, chromatin states, and their functions and explored the utility of the functional elements in interpreting phenotypic variation during sheep domestication and improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!