A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Search for host defense markers uncovers an apple agglutination factor corresponding with fire blight resistance. | LitMetric

Pathenogenesis-related (PR) proteins are extensively used as molecular markers to dissect the signaling cascades leading to plant defense responses. However, studies focusing on the biochemical or biological properties of these proteins remain rare. Here, we identify and characterize a class of apple (Malus domestica) PR proteins, named M. domestica AGGLUTININS (MdAGGs), belonging to the amaranthin-like lectin family. By combining molecular and biochemical approaches, we show that abundant production of MdAGGs in leaf tissues corresponds with enhanced resistance to the bacterium Erwinia amylovora, the causal agent of the disease fire blight. We also show that E. amylovora represses the expression of MdAGG genes by injecting the type 3 effector DspA/E into host cells and by secreting bacterial exopolysaccharides. Using a purified recombinant MdAGG, we show that the protein agglutinates E. amylovora cells in vitro and binds bacterial lipopolysaccharides at low pH, conditions reminiscent of the intercellular pH occurring in planta upon E. amylovora infection. We finally provide evidence that negatively charged polysaccharides, such as the free exopolysaccharide amylovoran progressively released by the bacteria, act as decoys relying on charge-charge interaction with the MdAGG to inhibit agglutination. Overall, our results suggest that the production of this particular class of PR proteins may contribute to apple innate immunity mechanisms active against E. amylovora.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825249PMC
http://dx.doi.org/10.1093/plphys/kiab542DOI Listing

Publication Analysis

Top Keywords

fire blight
8
amylovora
5
search host
4
host defense
4
defense markers
4
markers uncovers
4
uncovers apple
4
apple agglutination
4
agglutination factor
4
factor corresponding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!