Unlabelled: SARS-CoV-2 is a corona virus that has been the cause for one of the deadliest pandemics of history, started since 2019. Suppressing the activity of the critical enzymes in the SARS-CoV-2 could potentially inhibit a vital step in viral life cycle. Papain-like protease (PLpro) could be regarded as a critical enzyme in viral replication of SARS-CoV-2. In this research, it was aimed to suppress the activity of PLpro enzyme by using potential plant-derived protease inhibitor peptides. For this purpose, 11 plant derived peptides that could potentially inhibit protease activity were selected from literature. The structures of the PLpro and the peptide ligands were acquired from PDB (protein data bank) and after structural optimization, were docked by using HADDOCK 2.4 program. Analyzing the results indicated that VcTI from Veronica hederifolia provides effective molecular interactions at both liable Zn site and classic active site of PLpro, making it a potential inhibitory ligand for this enzyme that could be used for halting the replication of SARS-CoV-2. Molecular dynamic assay confirmed that the selected receptor and ligand complex was stable. Future in vitro and in vivo investigations are required to verify the efficiency of this compound as a potential therapeutic against SARS-CoV-2 infection.

Supplementary Information: The online version contains supplementary material available at 10.1007/s10989-021-10331-8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655715PMC
http://dx.doi.org/10.1007/s10989-021-10331-8DOI Listing

Publication Analysis

Top Keywords

papain-like protease
8
replication sars-cov-2
8
sars-cov-2
6
silico analysis
4
analysis inhibiting
4
inhibiting papain-like
4
protease
4
protease sars-cov-2
4
sars-cov-2 plant-derived
4
plant-derived peptides
4

Similar Publications

Sequence analysis and genome organization of a new marafivirus from Leptochloa chinensis.

Arch Virol

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.

High-throughput sequencing was used to identify and characterize a novel marafivirus from the weed Leptochloa chinensis, which was tentatively named "Leptochloa chinensis marafivirus" (LcMV). The complete genome of the virus consists of 6,178 base pairs, and its nucleotide sequence is 73.82% identical to that of Sorghum almum marafivirus, which is a member of the genus Marafivirus within the family Tymoviridae.

View Article and Find Full Text PDF

Applications of Machine Learning Approaches for the Discovery of SARS-CoV-2 PLpro Inhibitors.

J Chem Inf Model

January 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland 20850, United States.

The global impact of SARS-CoV-2 highlights the need for treatments beyond vaccination, given the limited availability of effective medications. While Pfizer introduced , an FDA-approved antiviral targeting the SARS-CoV-2 main protease (Mpro), this study focuses on designing new antivirals against another protease, papain-like protease (PLpro), which is crucial for viral replication and immune suppression. NCATS/NIH performed a high-throughput screen of ∼15,000 molecules from an internal molecular library, identifying initial hits with a 0.

View Article and Find Full Text PDF

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

Diverse strategies utilized by coronaviruses to evade antiviral responses and suppress pyroptosis.

Int J Biol Macromol

January 2025

Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China. Electronic address:

Viral infections trigger inflammasome-mediated caspase-1 activation. Nevertheless, limited understanding exists regarding how viruses use the active caspase-1 to evade host immune response. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of coronaviruses (CoVs) to illustrate the intricate regulation of CoVs to combat IFN-I signaling and pyroptosis.

View Article and Find Full Text PDF

The begomoviral V2 protein is known to be multifunctional, including its interaction with and inhibition of CYP1, a papain-like cysteine protease (PLCP). However, the effect of this interaction on viral pathogenicity remains unclear. Cotton leaf curl Multan virus (CLCuMuV), a typical monopartite begomovirus associated with a betasatellite, is one of the main pathogens responsible for cotton leaf curl disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!