Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41575-021-00567-6 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Pharmacology, University of Cambridge, Cambridge, UK.
The mammary gland is a complex organ, host to a rich array of different cell types. As the only organ to complete its development in adulthood, it delicately balances both cell intrinsic and external signalling from hormones, growth factors and other stimulants. The gland can undergo vast proliferation, restructuring and functional maturation during pregnancy and undo these gross changes to a nearly identical resting state during involution.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, USA.
Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!