Three-dimensional (3D) culture of organoids from primary cells (wild type) or tumoroids from tumor cells, is used to study the physiological mechanisms in vivo, in order to model normal or tumor tissues more accurately than conventional two-dimensional (2D) culture. The features of this 3D culture, such as the three-dimensional structure, the self-renewal capacity and differentiation are preserved and appropriate to cancer study since their cellular characteristics are very similar to in vivo models. Here, we summarize the recent advances in the rapidly evolving field of organoids and their applications to cancer biology, clinical research and personalized medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bulcan.2021.11.004 | DOI Listing |
Oncol Res
December 2024
Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
Liposarcoma is one of the most common soft tissue sarcomas, however, its occurrence rate is still rare compared to other cancers. Due to its rarity, experiments are an essential approach to elucidate liposarcoma pathobiology. Conventional cell culture-based research (2D cell culture) is still playing a pivotal role, while several shortcomings have been recently under discussion.
View Article and Find Full Text PDFWorld J Gastrointest Surg
December 2024
State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.
Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.
J Exp Clin Cancer Res
December 2024
Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
On September 23-24 (2024) the 6th Workshop IRE on Translational Oncology, titled "Cancer Organoids as Reliable Disease Models to Drive Clinical Development of Novel Therapies," took place at the IRCCS Regina Elena Cancer Institute in Rome. This prominent international conference focused on tumor organoids, bringing together leading experts from around the world.A central challenge in precision oncology is modeling the dynamic tumor ecosystem, which encompasses numerous elements that evolve spatially and temporally.
View Article and Find Full Text PDFHereditas
December 2024
Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.
Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.
Eur J Cell Biol
December 2024
Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan. Electronic address:
This study aims to provide a comprehensive review of the ethical, legal and social issues in human brain organoid research, with a view to different types of research and applications: in vitro research, transplantation into non-human animals, and biocomputing. Despite the academic and societal attention on the possibility that human brain organoids may be conscious, we have identified diverse issues in human brain organoid research and applications. To guide the complex terrain of human brain organoid research and applications, a multidisciplinary approach that integrates ethical, legal, and social perspectives is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!