In most bacteria, cell division is centrally organized by the FtsZ protein, which assembles into dynamic filaments at the division site along the cell membrane that interact with other key cell division proteins. In gammaproteobacteria such as Escherichia coli, FtsZ filaments are anchored to the cell membrane by two essential proteins, FtsA and ZipA. Canonically, this interaction was believed to be mediated solely by the FtsZ C-terminal peptide (CTP) domain that interacts with these and several other regulatory proteins. However, we now provide evidence of a second interaction between FtsZ and ZipA. Using site-specific photoactivated cross-linking, we identified a noncanonical FtsZ-binding site on ZipA on the opposite side from the FtsZ CTP-binding pocket. Cross-linking at this site was unaffected by the truncation of the FtsZ linker and CTP domains, indicating that this noncanonical site must interact directly with the globular core domain of FtsZ. Mutations introduced into either the canonical or noncanonical binding sites on ZipA disrupted photo-cross-linking with FtsZ and normal ZipA function in cell division, suggesting that both binding modes are important for normal cell growth and division. One mutation at the noncanonical face was also found to suppress defects of several other canonical and noncanonical site mutations in ZipA, suggesting there is some interdependence between the two sites. Taken together, these results suggest that ZipA employs a two-pronged FtsZ-binding mechanism. The tubulin homolog FtsZ plays a central early role in organizing bacterial cell division proteins at the cytoplasmic membrane. However, FtsZ does not directly interact with the membrane itself, instead relying on proteins such as FtsA to tether it to the membrane. In gammaproteobacteria, ZipA serves as a second essential membrane anchor along with FtsA. Although FtsA has a unique role in activating synthesis of the cell division septum, and ZipA may in turn activate FtsA, it was thought that both proteins interacted only with the conserved C terminus of FtsZ and were essentially interchangeable in their ability to tether FtsZ to the membrane. Here we challenge this view, providing evidence that ZipA directly contacts both the C terminus and the core domain of FtsZ. Such a two-pronged interaction between ZipA and FtsZ suggests that ZipA and FtsA may serve distinct membrane-anchoring roles for FtsZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669495 | PMC |
http://dx.doi.org/10.1128/mbio.02529-21 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFPurpose: Radiotherapy (RT)/cetuximab (C) demonstrated superiority over RT alone for locally advanced squamous head and neck cancer. We tested this in completely resected, intermediate-risk cancer.
Methods: Patients had squamous cell carcinoma of the head and neck (SCCHN) of the oral cavity, oropharynx, or larynx, with one or more risk factors warranting postoperative RT.
Acc Chem Res
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!