An N-methyladenosine and target genes-based study on subtypes and prognosis of lung adenocarcinoma.

Math Biosci Eng

Department of Thoracic Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.

Published: January 2022

Lung adenocarcinoma (LUAD) is a highly lethal subtype of primary lung cancer with a poor prognosis. N6-methyladenosine (mA), the most predominant form of RNA modification, regulates biological processes and has critical prognostic implications for LUAD. Our study aimed to mine potential target genes of mA regulators to explore their biological significance in subtyping LUAD and predicting survival. Using gene expression data from TCGA database, candidate target genes of mA were predicted from differentially expressed genes (DEGs) in tumor based on MA2 Target database. The survival-related target DEGs identified by Cox-regression analysis was used for consensus clustering analysis to subtype LUAD. Uni-and multi-variable Cox regression analysis and LASSO Cox-PH regression analysis were used to select the optimal prognostic genes for constructing prognostic score (PS) model. Nomogram encompassing PS score and independent prognostic factors was built to predict 3-year and 5-year survival probability. We obtained 2429 DEGs in tumor tissue, within which, 1267 were predicted to mA target genes. A prognostic mA-DEGs network of 224 survival-related target DEGs was established. We classified LUAD into 2 subtypes, which were significantly different in OS time, clinicopathological characteristics, and fractions of 12 immune cell types. A PS model of five genes (C1QTNF6, THSD1, GRIK2, E2F7 and SLCO1B3) successfully split the training set or an independent GEO dataset into two subgroups with significantly different OS time (p < 0.001, AUC = 0.723; p = 0.017, AUC = 0.705).A nomogram model combining PS status, pathologic stage, and recurrence was built, showing good performance in predicting 3-year and 5-year survival probability (C-index = 0.708, 0.723, p-value = 0). Using candidate mA target genes, we obtained two molecular subtypes and designed a reliable five-gene PS score model for survival prediction in LUAD.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2022013DOI Listing

Publication Analysis

Top Keywords

target genes
16
lung adenocarcinoma
8
candidate target
8
degs tumor
8
survival-related target
8
target degs
8
regression analysis
8
score model
8
3-year 5-year
8
5-year survival
8

Similar Publications

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

Objective: Understanding the relationship between genetic structure and the molecular changes involved in endometrial cancer (EC) provides an opportunity to personalize treatments and incorporate targeted therapies.

Method: We compared cytogenetic and molecular features observed in tumoral and adjacent healthy tissue endometrium samples in EC patients.

Results: Non-clonal chromosome aberrations (NCCAs) frequently in patients with EC, especially in 10,15,17,22, X chromosomes and were monitored in 73.

View Article and Find Full Text PDF

Previous research has highlighted the critical role of amino acid metabolism (AAM) in the pathophysiology of sepsis. The present study aimed to explore the potential diagnostic and prognostic value of AAM-related genes (AAMGs) in sepsis, as well as their underlying molecular mechanisms. Gene expression profiles from the Gene Expression Omnibus (GSE65682, GSE185263 and GSE154918 datasets) were analyzed.

View Article and Find Full Text PDF

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors with an annual incidence of ~2 cases per million worldwide. The hereditary form is more likely to present in younger patients. To date, PPGL is considered a complex pathology that is difficult to diagnose.

View Article and Find Full Text PDF

The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!