Progress of thrombus formation and research on the structure-activity relationship for antithrombotic drugs.

Eur J Med Chem

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France.

Published: January 2022

AI Article Synopsis

  • Many populations are affected by thrombotic disorders like stroke and myocardial infarction, with an increasing prevalence of cardio-cerebrovascular diseases linked to thrombosis.
  • The mechanisms behind thrombosis have led to the classification of antithrombotic drugs into three main categories: anticoagulants, platelet inhibitors, and fibrinolytics.
  • A review highlights the need for new antithrombotic compounds to address issues with existing drugs, aiming for improved safety and efficacy in treating thrombotic disorders.

Article Abstract

Many populations suffer from thrombotic disorders such as stroke, myocardial infarction, unstable angina and thromboembolic disease. Thrombus is one of the major threatening factors to human health and the prevalence of cardio-cerebrovascular diseases induced by thrombus is growing worldwide, even some persons got rare and severe blood clots after receiving the AstraZeneca COVID vaccine unexpectedly. In terms of mechanism of thrombosis, antithrombotic drugs have been divided into three categories including anticoagulants, platelet inhibitors and fibrinolytics. Nowadays, a large number of new compounds possessing antithrombotic activities are emerging in an effort to remove the inevitable drawbacks of previously approved drugs such as the high risk of bleeding, a slow onset of action and a narrow therapeutic window. In this review, we describe the causes and mechanisms of thrombus formation firstly, and then summarize these reported active compounds as potential antithrombotic candidates based on their respective mechanism, hoping to promote the development of more effective bioactive molecules for treating thrombotic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2021.114035DOI Listing

Publication Analysis

Top Keywords

thrombus formation
8
antithrombotic drugs
8
thrombotic disorders
8
progress thrombus
4
formation structure-activity
4
structure-activity relationship
4
antithrombotic
4
relationship antithrombotic
4
drugs populations
4
populations suffer
4

Similar Publications

In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation.

View Article and Find Full Text PDF

Background: Effective hemorrhage protocols prioritize immediate hemostatic resuscitation to manage hemorrhagic shock. Prehospital resuscitation using blood products, such as whole blood or alternatively dried plasma in its absence, has the potential to improve outcomes in hemorrhagic shock patients. However, integrating blood products into prehospital care poses substantial logistical challenges due to issues with storage, transport, and administration in field environments.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Assays of Platelet SNARE-actin Interactions.

Methods Mol Biol

January 2025

Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.

The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.

View Article and Find Full Text PDF

Background: The number of patients with hip and femoral fractures is increasing and is expected to further increase in upcoming years due to the ageing population and the life expectancy of the general population. In this analysis, we aimed to systematically assess the post-operative complications associated with the pre-operative use of Aspirin in patients undergoing surgery for hip or femoral fracture.

Methods: Common online databases: Google Scholar, Web of Science, MEDLINE, Cochrane database, EMBASE ( www.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!