Near infrared light triggered ternary synergistic cancer therapy via L-arginine-loaded nanovesicles with modification of PEGylated indocyanine green.

Acta Biomater

Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: March 2022

AI Article Synopsis

  • L-arginine (L-Arg) is a critical nitric oxide (NO) donor used in NO gas therapy, especially for cancer treatment, necessitating effective delivery systems.
  • A novel nano-vesicular system combining NO therapy, photodynamic therapy (PDT), and mild photothermal therapy (MPTT) was developed, featuring photosensitizer mPEG-ICG and encapsulated L-Arg within polyphosphazene nano-vesicles (IA-PEP).
  • The IA-PEP system demonstrated significant anti-tumor efficacy in vivo by producing reactive oxygen species (ROS) under laser irradiation, leading to tumor elimination with minimal side effects.

Article Abstract

L-arginine (L-Arg) is an important nitric oxide (NO) donor, and its exploration in NO gas therapy has received widespread attention. Application of nano-platforms that can efficiently deliver L-Arg and induce its rapid conversion to NO becomes a predominant strategy to achieve promising therapeutic effects in tumor treatment. Herein, an enhanced nano-vesicular system of ternary synergistic treatment combining NO therapy, photodynamic therapy (PDT) along with mild photothermal therapy (MPTT) was developed for cancer therapy. We integrated photosensitizer PEGylated indocyanine green (mPEG-ICG) into polyphosphazene PEP nano-vesicles through co-assembly and simultaneously encapsulated NO donor L-Arg into the vesicle center chambers to form mPEG-ICG/L-Arg co-loaded system IA-PEP. The unique nanostructure of vesicle provided considerable loading capacity for mPEG-ICG and L-Arg with 15.9% and 17.95% loading content, respectively, and efficiently prevented mPEG-ICG and L-Arg from leaking. Significantly, the reactive oxygen species (ROS) was produced by IA-PEP under 808 nm laser irradiation to perform PDT against tumors, which concurrently reacted with L-Arg to release NO and arouse gas therapy effectively. Moreover, the mild heat produced by IA-PEP could exhibit cooperative anti-tumor effect with minimal damage. As a consequence, in vivo antitumor investigation on nude mice bearing xenograft MCF-7 tumors verified the potent anti-tumor efficacy of IA-PEP under 808 nm laser irradiation with complete tumor elimination. Taken together, the IA-PEP nano-vesicle system designed in this work may provide a promising treatment paradigm for synergistic cancer treatment. STATEMENT OF SIGNIFICANCE: Nitric oxide (NO) gas therapy has drawn widespread attention due to its "green" treatment paradigm with negligible side effects. L-arginine (L-Arg) is an important NO donor. However, how to efficiently deliver L-Arg and induce NO generation remains a big challenge since L-Arg is a water-soluble small molecule. Herein, we developed a nano-vesicle system IA-PEP to integrate photosensitizer PEGylated indocyanine green and L-Arg with high loading content and to produce a ternary synergistic treatment combining NO therapy, photodynamic therapy (PDT) along with mild-temperature photothermal therapy (MPTT) under 808 nm laser irradiation. The in vivo investigation on nude mice bearing xenograft MCF-7 tumors verified its potent anti-tumor efficacy with complete tumor elimination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.12.012DOI Listing

Publication Analysis

Top Keywords

ternary synergistic
12
pegylated indocyanine
12
indocyanine green
12
gas therapy
12
808 laser
12
laser irradiation
12
therapy
11
l-arg
10
synergistic cancer
8
cancer therapy
8

Similar Publications

The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts BiO/CdS and MoS/BiO/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS).

View Article and Find Full Text PDF

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

TiCT/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection.

J Hazard Mater

January 2025

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.

View Article and Find Full Text PDF

The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.

View Article and Find Full Text PDF

Wound management remains a significant challenge due to complications such as delayed healing and microbial infections, particularly in the conditions like diabetes mellitus, vascular disorders, and immunosuppression. This study aimed to develop a chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulsion gel (CS-ASA-NEG) to enhance wound healing outcomes. A central composite design (CCD) was employed using Design Expert 11 software to optimize the nanoemulsion formulation, with ternary phase diagrams (TPD) evaluating stable regions for Tween 20: Span 80 (T20:S80) ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!