Impulsivity is defined in terms of deficits in instrumental response inhibition, when the inability to withhold an action produces a negative outcome. However, there are many behavioral and cognitive constructs which theoretically could contribute to disordered impulsivity, including Pavlovian responding, which few studies have considered in this context. In the present set of studies, we examine Pavlovian inhibitory learning and excitatory responding in a mouse model for dysregulated impulsivity, specifically, mice lacking the serotonin 1B receptor (5-HTR). Consistent with previous results, we show that these mice display increased impulsivity as measured by premature responding in the operant 5-choice serial reaction time test. In a Pavlovian conditioned inhibition paradigm, they also show a decreased ability to withhold responding, but importantly have an intact ability to learn inhibitory associations. In a Pavlovian appetitive conditioning experiment, 5-HTR knockout mice show normal responding under a positive contingency schedule, however, they display increased responding to cues presented on an independent schedule from reinforcement in a zero contingency schedule. Interestingly this difference does not occur when the cues are explicitly unpaired in a negative contingency schedule, nor during a 25% reinforcement schedule. Overall, while our results show that the deficits in operant response inhibition in mice lacking 5-HTR are likely not due to Pavlovian inhibitory or excitatory learning, it is relevant to consider associative learning in the context of dysregulated impulsive behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900532 | PMC |
http://dx.doi.org/10.1016/j.nlm.2021.107574 | DOI Listing |
PLoS Pathog
January 2025
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri.
Brucella is a gram negative, facultative intracellular bacterial pathogen that constitutes a substantial threat to human and animal health. Brucella can replicate in a variety of tissues and can induce immune responses that alter host metabolite availability. Here, mice were infected with B.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFEmerging evidence suggests that inhibitory control (IC) plays a pivotal role in science and maths counterintuitive reasoning by suppressing incorrect intuitive concepts, allowing correct counterintuitive concepts to come to mind. Neuroimaging studies have shown greater activation in the ventrolateral and dorsolateral pFCs when adults and adolescents reason about counterintuitive concepts, which has been interpreted as reflecting IC recruitment. However, the extent to which neural systems underlying IC support science and maths reasoning remains unexplored in children.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!