An SNP at the target site of cid-miR-nov-1043 in the TOLLIP 3' UTR decreases mortality rate in grass carp subjected to ENU-induced mutagenesis following grass carp reovirus infection.

Fish Shellfish Immunol

Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:

Published: January 2022

N-ethyl-N-nitrosourea (ENU) selection is a useful technique to generate new mutations that may cause some functional changes in the gene. Through our previous genomic bulked segregant analysis (BSA), one single nucleotide polymorphism (SNP) at the 3' UTR of Toll interacting protein gene (TOLLIP) was identified in grass carp (Ctenopharyngodon idella) subjected to ENU-induced mutagenesis. We found that the overexpression of cid-miR-nov-1043 mimics significantly suppressed the luciferase activity of the TOLLIP 3' UTR, but TOLLIP mutation at the target site can decrease the binding affinity between the miRNA cid-miR-nov-1043 and TOLLIP 3' UTR, reducing the inhibition of TOLLIP mRNA transcription in grass carp subjected to ENU-induced mutagenesis. More importantly, we demonstrated that TOLLIP mRNA transcription levels in the gills, liver, kidney and the isolate white cells of the mutant grass carp were significantly (p < 0.01) higher than those in the corresponding tissues from the wild-type grass carp following infection with Grass Carp Reovirus (GCRV) for seven days, while the downstream gene of TOLLIP transforming growth factor β-activated kinase 1 (TAK1) and TAK1-binding protein 1 (TAB1), were higher expressed in wild-type grass carp. As a negative regulator in the pro-inflammatory pathway of NF-κB, TOLLIP inhibits the excessive inflammation in ENU grass carp after GCRV infection. Consistent with the TOLLIP expression, histopathological results demonstrated more severe inflammation in wild-type grass carp, compared to the TOLLIP mutant grass carp on the seventh day. Severe inflammation will lead to thoroughly infiltration of chloride and inflammatory cells in the gill filaments. This seriously hindered the exchange of oxygen, which ultimately disrupted blood circulation. Meanwhile, the survival rate of the mutant grass carp was significantly (p < 0.01) higher than that of the wild-type grass carp, indicating that the TOLLIP mutants showed strong anti-viral abilities. Our results revealed that an SNP in the TOLLIP 3' UTR may contribute to the suppression of serve inflammation subjected to ENU-induced mutagenesis following GCRV infection, which may be helpful for future resistant breeding development of grass carp.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2021.12.010DOI Listing

Publication Analysis

Top Keywords

grass carp
20
tollip utr
12
subjected enu-induced
12
enu-induced mutagenesis
12
target site
8
cid-mir-nov-1043 tollip
8
carp subjected
8
tollip mrna
8
mrna transcription
8
tollip
7

Similar Publications

The aim of this study was to investigate the promotion of linoleic acid (OLA)-induced myofibrillar protein (MP) oxidation by boiling treatment. The effect of the boiling treatment on grass carp MP oxidation induced by OLA was investigated. The total sulfhydryl content, fluorescence intensity, and amino acid content were reduced with the increasing OLA concentration after the boiling treatment, while the boiled oxidized MP's carbonyl content (4.

View Article and Find Full Text PDF

Immunological memory in a teleost fish: common carp IgM B cells differentiate into memory and plasma cells.

Front Immunol

January 2025

Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.

Article Synopsis
  • All vertebrates, from ancient fishes to mammals, possess adaptive immunity and immunological memory, although the specific responding cells in fish have not been clearly defined.
  • Researchers infected common carp with a cnidarian parasite and observed that B cells proliferated and showed signs of differentiation, indicating they can form memory cells.
  • The study revealed that these memory B cells can persist for at least six months, alongside identifying a distinct population of plasma cells, suggesting that teleost fish possess the necessary immune components for effective long-term disease protection akin to other vertebrates.
View Article and Find Full Text PDF

This study aimed to explore the effects of different brining times on the sensory, physicochemical properties, and volatile organic compounds (VOCs) of marinated grass carp (MGC). The results showed that different brining time changed the sensory quality, color and texture. The moisture content increased significantly with the extension of brining time, while the salt content, protein content, thiobarbituric acid reactive substances (TBARS), and total volatile basic‑nitrogen (TVB-N) decreased ( 0.

View Article and Find Full Text PDF

Prior heatwave exposure improves hypoxia tolerance in a typical freshwater fish species.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.

The prevalence of heatwave and hypoxia events and their devastating impacts on aquatic ecosystems and fishery resources reinforces the priority of research to address the resilience and adaption mechanisms to these two stressors in important fish species. However, our understanding of the development of cross-tolerance of these two stressors in fish still limited. Here, we investigated the impacts of prior heatwave exposure on hypoxia tolerance and the underlying mechanisms in silver carp (Hypophthalmichthys molitrix), a species of considerable ecological and commercial importance.

View Article and Find Full Text PDF

Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China. Electronic address:

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!