Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The global environmental changes owing to natural and anthropogenic influences are challenging the structure and functioning of the ocean ecosystem. The complex processes interacting within the physical, chemical, and biological environment at different spatio-temporal scales and their impact on the ocean ecosystem processes are yet to be investigated. A long term trend on phytoplankton biomass in terms of Chlorophyll-a concentration (Chl-a), phytoplankton compositions and the processes that control the variability is required for understanding the ocean ecosystem. This study investigated decadal trends (2002-2015) of phytoplankton composition and biogeochemical parameters over the Global Ocean (GO), Southern Ocean (SO), and the Arctic Ocean (AO) using ocean color remote sensing and assimilated data from the National Aeronautics and Space Administration (NASA) Ocean biogeochemical model. The results revealed the dominance of larger cell phytoplankton mainly diatoms throughout the SO and AO; however, the coccolithophores dominate in the remaining part of the GO. Analysis of nutrients showed that nitrate is not a limiting factor for the variability of phytoplankton biomass in the SO and AO. The low nitrate concentration influenced in the rest of the GO. The photosynthetically available radiation (PAR) limiting the phytoplankton biomass and composition in the SO and AO. Although the SO is known as the high nutrient low chlorophyll (HNLC) region of the GO, the low iron concentration along with the PAR co-limits the growth of phytoplankton biomass. Trend analysis showed that an increase in Chl-a and diatoms in the SO and AO. In contrast, it declined significantly in the other regions of the GO, in response to the consistent increase in sea surface temperature. The results indicated that, shifting of phytoplankton community from regional to global scale have a greater implication for climate change and marine ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2021.112546 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!