A precipitation method involving a deep eutectic solvent (DES)─a mixture of hydrogen bond donor and acceptor─is used to synthesize a ternary metal oxide. Without toxic reagents, precipitates consisting of Zn(OH)VO·HO and Zn(OH)(CO) are obtained by simply introducing deionized HO to the DES solution containing dissolved ZnO and VO. Manipulation of the synthetic conditions demonstrates high tunability in the size/morphology of the two-dimensional nanosheets precipitated during the dynamic equilibrium process. According to differential scanning calorimetry and high-temperature powder X-ray diffraction, ZnVO and ZnO obtained by the annealing of the precipitate are intermediates in the reaction pathway toward metastable ZnVO. Intimate mixing of the metal precursors achieved by the precipitation method allows access to the metastable zinc-rich vanadate with unusually rapid heat treatment. The UV-vis and surface photovoltage spectra reveal the presence of sub-band gap states, stemming from the reduced vanadium (V) center. Photoelectrochemical measurements confirm weak photoanodic currents for water and methanol oxidation. For the first time, this work shows the synthesis of a metastable oxide with the DES-precipitation route and provides insight into the structure-property relationship of the zinc-rich vanadate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.1c02511 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey.
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.
View Article and Find Full Text PDFDeep eutectic solvents are highly tailorable non-aqueous solvents with potential applications ranging from energy catalysis to cryopreservation. Self-assembled lipid structures are already used in a variety of industries including cosmetics, drug delivery and as microreactors. However, most research into lipid self-assembly has been limited to aqueous solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!