Vibrational strong coupling (VSC), the strong coupling between optical resonances and the dipolar absorption of molecular vibrations at mid-infrared frequencies, holds the great potential for the development of ultrasensitive infrared spectroscopy, the modification of chemical properties of molecules, and the control of chemical reactions. In the realm of ultracompact VSC, there is a need to scale down the size of mid-infrared optical resonators and to elevate their optical field strength. Herein, by using single quartz micropillars as mid-infrared optical resonators, the strong coupling is demonstrated between surface phonon polariton (SPhP) resonances and molecular vibrations from far-field observation. The single quartz micropillars support sharp SPhP resonances with an ultrasmall mode volume, which strongly couples with the molecular vibrations of 4-nitrobenzyl alcohol (C H NO ) molecules featuring pronounced mode splitting and anticrossing dispersion. The coupling strength depends on the molecular concentration and reaches the strong coupling regime with only 7300 molecules. The findings pave the way for promoting the VSC sensitivity, miniaturing the VSC devices, and will boost the development of ultracompact mid-infrared spectroscopy and chemical reaction control devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202109088 | DOI Listing |
Environ Res
January 2025
Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam. Electronic address:
Many studies have displayed that freeze-thaw (F/T) conditioning is an environmentally friendly approach of improving sludge dewaterability. However, Initial water content (IWC) has a strong influence on the efficiency of the F/T method in conditioning sludge dewatering performance. Finding the most suitable F/T parameters for sludge with different IWCs is a critical issue that needs to be solved.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
Flavonoids are bioactive components in natural products, which possess anti-inflammatory, antibacterial, antioxidant, and cardiovascular protective properties. However, due to the complexity and low content of the components in these samples, developing rapid and sensitive methods for the isolation and extraction of flavonoids still remains a challenge in medical and food science. Herein, a 4-formylphenylboronic acid functionalized magnetic FeO nanomaterial (FeO@FPBA) was synthesized and applied as a sorbent of magnetic solid-phase extraction (MSPE) to covalently extract flavonoids from leaves of Lonicera japonica Thunb.
View Article and Find Full Text PDFJ Org Chem
January 2025
The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China.
A novel and efficient electrochemical method for electroselective and controlled cross-coupling of isoindolinones with equivalent alcohols has been developed without the need for metal catalysts and strong bases under mild conditions. The reaction provides a novel strategy for the controllable and effective synthesis of 3-alkoxyl and -hydroxymethyl-substituted isoindolinones, which is adjusted by 4-OH-TEMPO and tolerates various substrates. This protocol is an efficient tool for the construction of C-O and C-N bonds with high chemoselectivity.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland. Electronic address:
Plasmonic surface lattice resonance (SLR) is a phenomenon in which individual localized surface plasmon resonances (LSPRs) excited in periodically-arranged plasmonic nanoparticles couple through the interaction with the propagating diffracted incident light. The SLR optical absorption peak is by at least one order of magnitude more intense than the LSPR one, making SLR superior for applications in which LSPR is commonly used. Recently, we have developed a route for the fabrication of spherical virus-like particles (VLPs) with plasmonic Au cores and protein coronas, where the LSPR in the cores amplifies vibrational Raman signals originating from protein-antibody interactions [ACS Synth.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!