A new bifunctional ligand bearing chiral N-heterocyclic carbene (NHC) and prolinol moieties is presented. Utilizing the designed ligand, an in situ formed Cu/Zn hetero-bimetallic complex unlocks the asymmetric allylic alkylation reactions of allyl phosphates with zinc keto-homoenolates, leading to the formation of various γ-vinyl ketones with good regio- and enantio-selectivity. DF sT calculation supports that the chelation of allyl phosphates with catalyst promotes the S 2' addition and the ligand-substrate steric interactions account for the stereoselective outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202104268 | DOI Listing |
Biomacromolecules
December 2024
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices () of 1.63-1.
View Article and Find Full Text PDFChemSusChem
October 2024
Department of Catalytic Synthesis Based on Single-Carbon Molecules, L.V. Pysarzhevskii Institute of Physical Chemistry National Academy of Sciences of Ukraine, Prospect Nauki, 31, 03039, Kyiv, Ukraine.
The catalytic performance of phosphate-stabilized WO-ZrO compositions in gas-phase glycerol dehydration has been investigated. Results show that varying WO concentrations direct the process towards either acrolein or allyl alcohol formation. Catalysts with low WO content exhibit strong Lewis acid sites (Zr and W), where these metal ions likely function as redox sites, facilitating glycerol hydrogenolysis to produce allyl alcohol.
View Article and Find Full Text PDFScience
September 2024
Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA.
Transition metal-catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp)-O functionalization step have precluded general methods. Here, we describe computationally guided transition metal-ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved.
View Article and Find Full Text PDFPrenylated-FMN (prFMN) is the cofactor used by the UbiD-like family of decarboxylases that catalyzes the decarboxylation of various aromatic and unsaturated carboxylic acids. prFMN is synthesized from reduced FMN and dimethylallyl phosphate (DMAP) by a specialized prenyl transferase, UbiX. UbiX catalyzes the sequential formation of two bonds, the first between N5 of the flavin and C1 of DMAP, and the second between C6 of the flavin and C3 of DMAP.
View Article and Find Full Text PDFACS Polym Au
August 2024
Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
This study elucidates the pivotal role of terminal structures in -1,4-polyisoprene (PI) chains, contributing to the exceptional mechanical properties of Hevea natural rubber (NR). NR's unique networking structure, crucial for crack resistance, elasticity, and strain-induced crystallization, involves two terminal groups, ω and α. The proposed ω terminal structure is dimethyl allyl-(-1,4-isoprene), and α terminals exist in various forms, including hydroxy, ester, and phosphate groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!