Controllable higher-order assembly is a central aim of macromolecular chemistry. An essential challenge to developing these molecules is improving our understanding of the structures they adopt under different conditions. Here, we demonstrate how flow linear dichroism (LD) spectroscopy is used to provide insights into the solution structure of a chiral, self-assembled fibrillar foldamer. Poly(-aryltriazole)s fold into different structures depending on the monomer geometry and variables such as solvent and ionic strength. LD spectroscopy provides a simple route to determine chromophore alignment in solution and is generally used on natural molecules or molecular assemblies such as DNA and M13 bacteriophage. In this contribution, we show that LD spectroscopy is a powerful tool in the observation of self-assembly processes of synthetic foldamers when complemented by circular dichroism, absorbance spectroscopy, and microscopy. To that end, poly(-aryltriazole)s were aligned in a flow field under different solvent conditions. The extended aromatic structures in the foldamer give rise to a strong LD signal that changes in sign and in intensity with varying solvent conditions. A key advantage of LD is that it only detects the large assemblies, thus removing background due to monomers and small oligomers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656205 | PMC |
http://dx.doi.org/10.1021/acsomega.1c06139 | DOI Listing |
ACS Nano
January 2025
Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.
Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.
View Article and Find Full Text PDFAdv Mater
January 2025
Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS is demonstrated via light. Below the Néel temperature, linear dichroism (i.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Life Science, Northwest University, Xian, 710069, Shaanxi, China.
Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark. Electronic address:
The IR polarization spectrum of acetylacetone enol (AAe, (3Z)-4-hydroxy-3-penten-2-one) was recorded in the region 2000 - 450 cm using stretched polyethylene as an anisotropic solvent. The measured orientation factors were consistent with C molecular symmetry of AAe and provided an experimental distinction between in-plane and out-of-plane polarized spectral features. The results suggest the assignment of at least one previously unrecognized fundamental transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!