RNA is a functionally rich molecule with multilevel, hierarchical structures whose role in the adsorption to molecular substrates is only beginning to be elucidated. Here, we introduce a multiscale simulation approach that combines a tractable coarse-grained RNA structural model with an interaction potential of a structureless flat adsorbing substrate. Within this approach, we study the specific role of stem-hairpin and multibranch RNA secondary structure motifs on its adsorption phenomenology. Our findings identify a dual regime of adsorption for short RNA fragments with and without the secondary structure and underline the adsorption efficiency in both cases as a function of the surface interaction strength. The observed behavior results from an interplay between the number of contacts formed at the surface and the conformational entropy of the RNA molecule. The adsorption phenomenology of RNA seems to persist also for much longer RNAs as qualitatively observed by comparing the trends of our simulations with a theoretical approach based on an ideal semiflexible polymer chain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655909 | PMC |
http://dx.doi.org/10.1021/acsomega.1c04774 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.
Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.
Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.
Sci Rep
January 2025
Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 950 Donghai Street, Fengze District, Quanzhou, 362000, Fujian, China.
The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).
View Article and Find Full Text PDFrRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!