This paper presents our investigation on cesium and iodine revaporization from cesium iodide (CsI) deposits on stainless steel type 304L, which were initiated by boron and/or steam flow. A dedicated basic experimental facility with a thermal gradient tube (TGT) having a temperature range of 1000-400 K was used for simulating the phenomena. In the absence of boron, it was found that the initially deposited CsI at 850 K could be revaporized as CsI vapor/aerosol or reacted with the carrier gas and stainless steel (CrO layer) to form CsCrO. The latter mechanism consequently released gaseous iodine that was later accumulated downstream. After introducing boron to the steam flow, a severe revaporization occurred. This, in addition to the revaporized CsI vapor/aerosol, was caused by cesium borate (CsBO and CsBO) formation, which then largely released gaseous iodine that was capable of reaching the TGT outlet (<400 K). In the case of a nuclear severe accident, our study has demonstrated that an increase of gaseous iodine in the colder region of a reactor could occur after late release of boron or a subsequent steam flow after refloods of the reactor, thus posing its inherent risk once leaked to the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655899 | PMC |
http://dx.doi.org/10.1021/acsomega.1c04441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!