The detection of -nitrosodimethylamine (NDMA) in several marketed drugs led regulatory agencies to require that -nitrosamine risk assessments be performed on all marketed medical products [EMA/351053/2019 rev 1 (2019)]. Regulation of -nitrosamine impurity levels in pharmaceutical drug substances and products is described in the ICH M7(R1) guideline where they are referred to as "cohort-of-concern" compounds as several are potent rodent carcinogens [Kroes . 2004]. EMA, U.S. FDA and other regulatory agencies have set provisional acceptable daily intake limits for nitrosamines calculated from rodent carcinogenicity TD values for experimentally measured nitrosamines or the measured TD values of close analogs. The class-specific limit can be adjusted based upon a structure activity relationship analysis (SAR) and comparison with analogs having established carcinogenicity data [EMA/369136/2020, (2020)]. To investigate whether improvements in SARs can more accurately predict -nitrosamine carcinogenic potency, an ad hoc workgroup of 23 companies and universities was established with the goals of addressing several scientific and regulatory issues including: reporting and review of -nitrosamine mutagenicity and carcinogenicity reaction mechanisms, collection and review of available, public relevant experimental data, development of structure-activity relationships consistent with mechanisms for prediction of nitrosamine carcinogenic potency categories, and improved methods for calculating acceptable intake limits for -nitrosamines based upon mechanistic analogs. Here we describe this collaboration and review our progress to date towards development of mechanistically based structure-activity relationships. We propose improving risk assessment of -nitrosamines by first establishing the dominant reaction mechanism prior to retrieving an appropriate set of close analogs for use in read-across exercises.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659209 | PMC |
http://dx.doi.org/10.1016/j.comtox.2021.100186 | DOI Listing |
Database (Oxford)
January 2025
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.
View Article and Find Full Text PDFLangmuir
January 2025
National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.
The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.
View Article and Find Full Text PDFCurr Drug Targets
January 2025
School of Pharmaceutical Sciences, Shoolini University, Solan, HP, India.
A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!