To endow Ti-based orthopedic implants immunomodulatory capability and thus enhanced osseointegration, different amounts of Sr are doped in NaTiO nanorods in the arrays with identical nanotopographic parameters (rod diameter, length and inter-rod spacing) by substitution of Na using hydrothermal treatment. The obtained arrays are denoted as STSr2, STSr4, and STSr7, where the arabic numbers indicate the incorporating amounts of Sr in NaTiO. The modulation effects of the Sr-doped nanorods arrays on macrophage polarization and osteogenetic functions of osteoblasts are investigated, together with the array without Sr (ST). Moreover, osseointegration of these arrays are also assayed in rat femoral condyles. Sr-doped nanorods arrays accelerate M1 (pro-inflammatory phenotype)-to-M2 (anti-inflammatory phenotype) transformation of the adhered macrophages, enhancing secretion of pro-osteogenetic cytokines and growth factors (TGF-β1 and BMP2), moreover, the Sr doped arrays directly enhance osteogenetic functions of osteoblasts. The enhancement of paracrine of M2 macrophages and osteogenetic function of osteoblasts is promoted with the increase of Sr incorporating amounts. Consequently, Sr doped arrays show significantly enhanced osseointegration compared to ST, and STSr7 exhibits the best performance. Our work sheds a new light on the design of surface chemical components and structures for orthopedic implants to enhance their osseointegration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636710PMC
http://dx.doi.org/10.1016/j.bioactmat.2021.08.033DOI Listing

Publication Analysis

Top Keywords

nanorods arrays
12
orthopedic implants
8
enhanced osseointegration
8
incorporating amounts
8
sr-doped nanorods
8
osteogenetic functions
8
functions osteoblasts
8
doped arrays
8
arrays
7
immunomodulation osseointegration
4

Similar Publications

General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:

The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.

View Article and Find Full Text PDF

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Lobelia-Inspired Photothermal Storage Flexible Film for Efficient Deicing.

Small Methods

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.

The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!