The complex pathogenesis of osteoporosis includes excessive bone resorption, insufficient bone formation and inadequate vascularization, a combination which is difficult to completely address with conventional therapies. Engineered exosomes carrying curative molecules show promise as alternative osteoporosis therapies, but depend on specifically-functionalized vesicles and appropriate engineering strategies. Here, we developed an exosome delivery system based on exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (iPSCs). The engineered exosomes BT-Exo-si, took advantage of the intrinsic anti-osteoporosis function of these special MSC-derived exosomes and collaborated with the loaded siRNA of the gene to enhance the therapeutic effects. Modification of a bone-targeting peptide endowed the BT-Exo-si an ability to deliver siRNA to osteoblasts specifically. Silencing of the osteoblastic gene enhanced osteogenic differentiation, decreased autologous RANKL expression and thereby inhibited osteoclast formation. Furthermore, gene silencing increased production of SLIT3 and consequently facilitated vascularization, especially formation of type H vessels. Our study demonstrated that BT-Exo-si could serve as a promising therapy to kill three birds with one stone and implement comprehensive anti-osteoporosis effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8636739 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2021.09.015 | DOI Listing |
Eur J Pharmacol
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:
Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFTheranostics
January 2025
Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:
Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.
View Article and Find Full Text PDFBiomicrofluidics
December 2024
Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
Glioblastoma multiforme, the most common type of highly aggressive primary brain tumor, is influenced by complex molecular signaling pathways, where microRNAs (miRNAs) play a critical regulatory role. Originating from glial cells, glioblastoma cells are affected by the physiological direct current electric field (dcEF) in the central nervous system. While dcEF has been shown to affect glioblastoma migration (electrotaxis), the specific impact on glioblastoma intercellular communication and miRNA expression in glioblastoma cells and their exosomes remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!