Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the learning of a human brain. Similar to the basic structure of a brain, which consists of (billions of) neurons and connections between them, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines and outline the research impact that they already have during a short period of time. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources (image, language, medical, mixed). In addition, we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627237 | PMC |
http://dx.doi.org/10.7717/peerj-cs.773 | DOI Listing |
iScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFOver the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFPak J Med Sci
January 2025
Juan Chen, Department of Ophthalmology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
Objective: To design a deep learning-based model for early screening of diabetic retinopathy, predict the condition, and provide interpretable justifications.
Methods: The experiment's model structure is designed based on the Vision Transformer architecture which was initiated in March 2023 and the first version was produced in July 2023 at Affiliated Hospital of Hangzhou Normal University. We use the publicly available EyePACS dataset as input to train the model.
J Pathol Inform
January 2025
Cincinnati Children's AI Imaging Research (CAIIR) Center, Cincinnati, OH, United States.
Background: Traditional liver fibrosis staging via percutaneous biopsy suffers from sampling bias and variable inter-pathologist agreement, highlighting the need for more objective techniques. Deep learning models for disease staging from medical images have shown potential to decrease diagnostic variability, with recent weakly supervised learning strategies showing promising results even with limited manual annotation.
Purpose: To study the clustering-constrained attention multiple instance learning (CLAM) approach for staging liver fibrosis on trichrome whole slide images (WSIs) of children and young adults.
Front Neurosci
January 2025
Department of Mathematics, University of Antwerp-Interuniversity Microelectronics Centre (imec), Antwerp, Belgium.
Introduction: The study of attention has been pivotal in advancing our comprehension of cognition. The goal of this study is to investigate which EEG data representations or features are most closely linked to attention, and to what extent they can handle the cross-subject variability.
Methods: We explore the features obtained from the univariate time series from a single EEG channel, such as time domain features and recurrence plots, as well as representations obtained directly from the multivariate time series, such as global field power or functional brain networks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!