Myocardial perfusion imaging (MPI) plays an important role in patients with suspected and documented coronary artery disease (CAD). Machine Learning (ML) algorithms have been developed for many medical applications with excellent performance. This study used ML algorithms to discern normal and abnormal gated Single Photon Emission Computed Tomography (SPECT) images. We analyzed one thousand and seven polar maps from a database of patients referred to a university hospital for clinically indicated MPI between January 2016 and December 2018. These studies were reported and evaluated by two different expert readers. The image features were extracted from a specific type of polar map segmentation based on horizontal and vertical slices. A senior expert reading was the comparator (gold standard). We used cross-validation to divide the dataset into training and testing subsets, using data augmentation in the training set, and evaluated 04 ML models. All models had accuracy >90% and area under the receiver operating characteristics curve (AUC) >0.80 except for Adaptive Boosting (AUC = 0.77), while all precision and sensitivity obtained were >96 and 92%, respectively. Random Forest had the best performance (AUC: 0.853; accuracy: 0,938; precision: 0.968; sensitivity: 0.963). ML algorithms performed very well in image classification. These models were capable of distinguishing polar maps remarkably into normal and abnormal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660123 | PMC |
http://dx.doi.org/10.3389/fcvm.2021.741667 | DOI Listing |
J Biophotonics
January 2025
School of Optoelectronics, Zhejiang University, Hangzhou, China.
The article describes a technique for digital holographic reconstruction of complex amplitude fields in diffuse blood facies using laser polarization-interference phase scanning to isolate a single scattered component of the object field. This method serves as the basis for developing algorithms for Mueller-matrix reconstruction of linear and circular birefringence parameters in the polycrystalline architectonics of blood facies. Statistical (central moments of the 1st-4th orders) and multifractal analyses (fractal dimension spectra) are applied to study the optical anisotropy maps of polycrystalline networks during blood dehydration.
View Article and Find Full Text PDFMol Genet Genomics
December 2024
Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.
View Article and Find Full Text PDFJ Cardiovasc Imaging
December 2024
Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea.
Background: Evaluation of regional left ventricle function using two-dimensional echocardiography (2DE) in patients with ischemic heart disease has limitations due to its low objectivity and qualitative nature. In addition, 2DE is limited because multiple acoustic windows are used to obtain the image, whereas three-dimensional echocardiography (3DE) uses a single window. This study aims to demonstrate the clinical utility of 3DE segmental volume analysis for evaluating regional wall motion abnormality (RWMA).
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Walter Schottky Institut, Technical University of Munich, Garching 85748, Germany.
InAs semiconductor quantum dots (QDs) emitting in the near-infrared are promising platforms for on-demand single-photon sources and spin-photon interfaces. However, the realization of quantum-photonic nanodevices emitting in the telecom windows with similar performance remains an open challenge. In particular, nanophotonic devices incorporating quantum light emitting diodes in the telecom C-band based on GaAs substrates are still lacking due to the relaxation of the lattice constant along the InGaAs graded layer which makes the implementation of electrically contacted devices challenging.
View Article and Find Full Text PDFPLoS One
December 2024
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
MRI of patients with Deep Brain Stimulation (DBS) implants is constrained due to radiofrequency (RF) heating of the implant lead. However, "RF-shimming" parallel transmission (PTX) has the potential to reduce DBS heating during MRI. As part of using PTX in such a "safe mode", maps of the RF transmission field (B1+) are typically acquired for calibration purposes, with each transmit coil excited individually.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!