Well-ordered hierarchically porous carbon (HPC) nanomaterials have been successfully synthesized by a facile, efficient, and fast heated-evaporation induced self-assembly (HISA) method. A micelle system was employed as the template by using the HISA method for the first time, which possessed great potential in the large-scale production of HPC materials. Various surfactants, including triblock copolymer Pluronic F127, P123, F108, and cationic CTAB, were used in the polymerization process as templates to reveal the relationship between the structure of surfactants and architecture of the as-prepared HPCs. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Nitrogen adsorption, and Fourier transform infrared (FTIR) measurements were conducted to investigate the morphology, structure, and components of HPCs, which further confirmed the well-ordered and uniform mesoporous structure. The as-prepared HPC sample with F127 possessed the largest specific surface area, suitable pore size, and well-ordered mesoporous structure, resulting in better electrochemical performance as electrodes in the fields of energy storage and conversion system. Doped with the metallic oxide MnO, the MnO/HPC composites presented the outstanding electrochemical activity in supercapacitor with a high specific capacitance of 531.2 F g at 1 A g and excellent cycling performance with little capacity fading, even after 5,000 cycles. Moreover, the obtained sample could also be applied in the fields of oxygen reduction reaction (ORR) for its abundant active sites and regulate architecture. This versatile approach makes the mass industrial production of HPC materials possible in electrochemical applications through a facile and fast route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655679PMC
http://dx.doi.org/10.3389/fchem.2021.762103DOI Listing

Publication Analysis

Top Keywords

hierarchically porous
8
porous carbon
8
micelle system
8
hisa method
8
production hpc
8
hpc materials
8
mesoporous structure
8
facile route
4
route synthesis
4
synthesis hierarchically
4

Similar Publications

Chlorine Axial Coordination Activated Lanthanum Single Atoms for Efficient Oxygen Electroreduction with Maximum Utilization.

Adv Mater

December 2024

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

Currently, there are still obstacles to rationally designing the ligand fields to activate rare-earth (RE) elements with satisfactory intrinsic electrocatalytic reactivity. Herein, axial coordination strategies and nanostructure design are applied for the construction of La single atoms (La-Cl SAs/NHPC) with satisfactory oxygen reduction reaction (ORR) activity. The nontrivial LaNCl motifs configuration and the hierarchical porous carbon substrate that facilitates maximized metal atom utilization ensure high half-wave potential (0.

View Article and Find Full Text PDF

Conjugated Phthalocyanine-Based Mesoporous Covalent Organic Frameworks for Efficient Anodic Lithium Storage.

Small

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.

View Article and Find Full Text PDF

The rational design of metal-nitrogen-doped carbons (M-N-C) from available and cost-effective sources featuring high electrocatalytic performance and stability is attractive for the development of viable low-temperature fuel cells. Herein, mimosa tannin, an abundant polyphenol easily extracted from the Mimosa plant, is used as a natural carbon source to produce a tannin-Fe(III) coordination complex. This process is assisted by Pluronic F127, which acts as both a surfactant and a promoter of Fe-N active sites.

View Article and Find Full Text PDF

Interfacial modulation of hierarchically porous UIO-66 for the immobilization of Rhizomucor miehei lipase towards the efficient synthesis of 1,3-dioleic acid glycerol.

Int J Biol Macromol

December 2024

State Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou University, 100 Kexue Dadao, Zhengzhou 450001, China; School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

Herein, UiO-66 was selected as the immobilization carrier of Rhizomucor miehei lipase (RML). After etching and hydrophobic modification, the functionalized UIO-66 (H-UIO-66-OPA) was utilized for RML immobilization and the obtained RML@H-UIO-66-OPA showed about 70 % relative activity after incubation at 60 °C, which was much better than RML (20 %). RML@H-UIO-66-OPA was used in the synthesis of 1,3-dioleic acid glycerol (1,3-DAG) and the effects of reaction conditions (temperature, enzyme addition, substrate molar ratio, and time) on 1,3-DAG yield were investigated.

View Article and Find Full Text PDF

A simply designed quasi-ratiometric fluorescence probe for the visual and on-site detection of levofloxacin (LVF) residues in milk and fish sample.

Talanta

December 2024

College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.

An europium metal organic framework (Eu-DBPA-Phen) was synthesized using 2,5-dibromoterephthalic acid (HDBPA) and 1-10-phenanthroline (Phen) as ligands. A straightforwardc quasi-ratiometric fluorescence probe was then developed for the detection of levofloxacin (LVF) by the simplistic combination of red-emitting Eu-DBPA-Phen and the inherent blue auto-fluorescence of the target. The probe exhibits the advantages of wide linear range (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!