In recent years, the development of continuous-flow reactors has attracted growing attention from the synthetic community. Moreover, findings in the precise control of the reaction parameters and improved mass/heat transfer have made the flow setup an attractive alternative to batch reactors, both in academia and industry, enabling safe and easy scaling-up of synthetic processes. Even though a majority of the pharmaceutical industry currently rely on batch reactors or semibatch reactors, many are integrating flow technology because of easier maintenance and lower risks. Herein, we demonstrate an operationally simple flow setup for homogeneous ring-closing metathesis, which is applicable to the synthesis of active pharmaceutical ingredients precursors or analogues with high efficiency, low residence time, and in a green solvent. Furthermore, through the addition of a soluble metal scavenger in the subsequent step within the flow system, the level of ruthenium contamination in the final product can be greatly reduced (to less than 5 ppm). To ensure that this method is applicable for industrial usage, an upscale process including a 24 h continuous-flow reaction for more than 60 g of a Sildenafil analogue was achieved in a continuous-flow fashion by adjusting the tubing size and flow rate accordingly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655794PMC
http://dx.doi.org/10.1021/acssuschemeng.1c06522DOI Listing

Publication Analysis

Top Keywords

soluble metal
8
metal scavenger
8
flow setup
8
batch reactors
8
flow
6
olefin metathesis
4
metathesis continuous
4
continuous flow
4
flow reactor
4
reactor employing
4

Similar Publications

Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.

View Article and Find Full Text PDF

Civil and geotechnical researchers are searching for economical alternatives to replace traditional soil stabilizers such as cement, which have negative impacts on the environment. Chitosan biopolymer has shown its capacity to efficiently minimize soil erosion, reduce hydraulic conductivity, and adsorb heavy metals in soil that is contaminated. This research used unconfined compression strength (UCS) to investigate the impact of chitosan content, long-term strength assessment, acid concentration, and temperature on the improvement of soil strength.

View Article and Find Full Text PDF

This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have become a highly usable system in various sectors because of their highly ordered structure and high porosity providing them with high storage capacity. However, their use is sometimes forbidden in the food industry due to the presence of some organic compounds which have undesirable effects. Cyclodextrins, which are considered GRAS (Generally Recognized as Safe) by the FDA, comes as a very good alternative to previously used compounds for the development of the MOFs to be used in the food packaging industry, especially in the packaging sector.

View Article and Find Full Text PDF

The scientific interest in the chemical modification of chitosan to increase its solubility and application has led to its conjugation with Schiff bases, which are interesting scaffolds endowed with diverse biological properties. The resultant chitosan-based Schiff bases (CSBs) are widely studied in scientific literature due to the myriad of activities exerted, both catalytic and biological, including anticancer, anti-inflammatory, antioxidant, and especially antimicrobial ones. Antimicrobial resistance (AMR) is one of the major public health challenges of the twenty-first century because it represents a threat to the prevention and treatment of a growing number of bacterial, parasitic, viral, and fungal infections that are no longer treatable with the available drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!