Objectives: Cryptotanshinone (CPT), a natural quinoid diterpene, isolated from , has shown various pharmacological properties. However, its effect on chronic unpredictable stress (CUS)-induced depression phenotypes and the underlying mechanism remain unclear. Therefore, the aim of this study was to investigate whether CPT could exert an antidepressant effect.

Methods: We investigated the effects of CPT in a CUS-induced depression model and explored whether these effects were related to the anti-inflammatory and neurogenesis promoting properties by investigating the expression levels of various signaling molecules at the mRNA and protein levels.

Results: Administration of CPT improved depression-like behaviors in CUS-induced mice. CPT administration increased the levels of doublecortin-positive cells and reversed the decrease in the expression levels of brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling transduction, as well as the downstream functional proteins, phosphorylated extracellular regulated protein kinases (p-ERK), and cyclic adenosine monophosphate (cAMP)-response element-binding protein levels (p-CREB) in hippocampus. CPT treatment also inhibited the activation of microglia and suppressed M1 microglial polarization, while promoting M2 microglial polarization by monitoring the expression levels of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), and further inhibited the expression of proinflammatory cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), and increased the expression of the anti-inflammatory cytokine IL-10 by regulating nuclear factor-κB (NF-κB) activation.

Conclusions: CPT relieves the depressive-like state in CUS-induced mice by enhancing neurogenesis and inhibiting inflammation through the BDNF/TrkB and NF-κB pathways and could therefore serve as a promising candidate for the treatment of depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633587PMC
http://dx.doi.org/10.1515/tnsci-2020-0198DOI Listing

Publication Analysis

Top Keywords

expression levels
12
cus-induced depression
8
cus-induced mice
8
microglial polarization
8
cpt
7
cus-induced
5
expression
5
levels
5
cryptotanshinone ameliorates
4
ameliorates cus-induced
4

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!