Purpose: Environmental contamination with various pesticides accompanied by uncontrolled use contributes to severe ecological and health problems. Although extensive research was conducted on pesticides degradation, very few reports have demonstrated the degradation of mixed pesticides. Consequently, this study aimed to evaluate the removal efficacy of highly potent bacterial isolate for pesticide mixture under optimal culture conditions, followed by their application in milk.
Methods: Isolation and selection of bacterial isolates were performed from 40 milk samples by enrichment culture technique and were screened to obtain highly potent bacterial strain identified by 16 S rDNA analysis. The statistics-based experimental designs were applied to optimize the culture conditions towards the best degradation of pesticides mixture, followed by subsequent utilization in milk. The degradation ratio of pesticides was analyzed using gas chromatography-mass spectrometry.
Results: In this study, a bacterial strain S6A identified as -mw1 efficiently eliminated environmental contaminants from different groups of pesticide residues. The statistical optimization showcased optimum settings that accomplished the highest pesticide mixture degradation (61.59 %). The application experiment manifested that degradation of pesticide mixtures of sterile milk (STM) was relatively faster than non-sterile milk (NSTM).
Conclusions: The obtained results assist in eliminating environmental contamination with various groups of pesticide residues. Furthermore, it can be employed in reducing pesticide residues that cause milk contamination to increase safety and quality.Graphical abstract.
Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-021-00683-0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617149 | PMC |
http://dx.doi.org/10.1007/s40201-021-00683-0 | DOI Listing |
Parasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China. Electronic address:
People are continually and simultaneously exposed to various non-persistent pesticides as these chemicals are ubiquitously distributed in the environment. Toxicological studies have indicated the associations between non-persistent pesticides and liver fibrosis in vitro and in vivo. However, epidemical study on the deleterious effect of non-persistent pesticides on the risk of liver fibrosis is rather limited.
View Article and Find Full Text PDFInsects
December 2024
National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China.
Asian citrus psyllid (ACP), (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as insecticides or adjuvants in integrated pest management (IPM) practices.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Mississippi State University College of Veterinary Medicine, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA.
While there are a number of factors which may promote chronic inflammation, a major factor is pro-inflammatory activation of resident and infiltrating macrophages. Recently, exposures to persistent organic pollutants including organochlorine (OC) pesticides have been implicated in dysregulation of macrophage function. However, the majority of these studies examined single compound effects and not mixture-based effects.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China.
Microplastics (MPs) and pesticides are identified as two environmental pollutants. In the present study, we showed evidence of toxic effects on honey bees from chronic oral exposure to food containing difenoconazole alone (Dif) and in a binary mixture with polystyrene (PS)-MPs (Dif + PS). We observed a disrupted gut microbial community structure in bees after difenoconazole exposure, and the gut microbiota structure richness increased at the phylum and genus levels in Dif + PS group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!