Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634049 | PMC |
http://dx.doi.org/10.12688/f1000research.72843.2 | DOI Listing |
BMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFJ Biomed Inform
January 2025
Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:
Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201304, China.
Anomalies frequently occur during the operation of spacecraft in orbit, and studying anomaly detection methods is crucial to ensure the normal operation of spacecraft. Due to the complexity of spacecraft structures, telemetry data possess characteristics such as high dimensionality, complexity, and large scale. Existing methods frequently ignore or fail to explicitly extract the correlation between variables, and due to the lack of prior knowledge, it is difficult to obtain the initial relationship of variables.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China.
Due to advances in big data technology, deep learning, and knowledge engineering, biological sequence visualization has been extensively explored. In the post-genome era, biological sequence visualization enables the visual representation of both structured and unstructured biological sequence data. However, a universal visualization method for all types of sequences has not been reported.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Artificial Intelligence, Anhui University, Hefei 230601, China.
Interleukin-6 (IL-6) is a potent glycoprotein that plays a crucial role in regulating innate and adaptive immunity, as well as metabolism. The expression and release of IL-6 are closely correlated with the severity of various diseases. IL-6-inducing peptides are critical for the development of immunotherapy and diagnostic biomarkers for some diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!