Simple nucleotide matching identification methods are not as accurate as once thought at identifying environmental fungal sequences. This is largely because of incorrect naming and the underrepresentation of various fungal groups in reference datasets. Here, we explore these issues by examining an environmental metabarcoding dataset of partial large subunit rRNA sequences of Basidiomycota and basal fungi. We employed the simple matching method using the QIIME 2 classifier and the RDP Classifier in conjunction with the latest releases of the SILVA (138.1, 2020) and RDP (11, 2014) reference datasets and then compared the results with a manual phylogenetic binning approach. Of the 71 query sequences tested, 21 and 42% were misidentified using QIIME 2 and the RDP Classifier, respectively. Of these simple matching misidentifications, more than half resulted from the underrepresentation of various groups of fungi in the SILVA and RDP reference datasets. More comprehensive reference datasets with fewer misidentified sequences will increase the accuracy of simple matching identifications. However, we argue that the phylogenetic binning approach is a better alternative to simple matching since, in addition to better accuracy, it provides evolutionary information about query sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662557PMC
http://dx.doi.org/10.3389/fgene.2021.768473DOI Listing

Publication Analysis

Top Keywords

simple matching
20
reference datasets
20
qiime rdp
8
misidentified sequences
8
rdp classifier
8
phylogenetic binning
8
binning approach
8
query sequences
8
simple
6
sequences
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!