A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct Approach or Detour: A Comparative Model of Inhibition and Neural Ensemble Size in Behavior Selection. | LitMetric

Organisms must cope with different risk/reward landscapes in their ecological niche. Hence, species have evolved behavior and cognitive processes to optimally balance approach and avoidance. Navigation through space, including taking detours, appears also to be an essential element of consciousness. Such processes allow organisms to negotiate predation risk and natural geometry that obstruct foraging. One aspect of this is the ability to inhibit a direct approach toward a reward. Using an adaptation of the well-known detour paradigm in comparative psychology, but in a virtual world, we simulate how different neural configurations of inhibitive processes can yield behavior that approximates characteristics of different species. Results from simulations may help elucidate how evolutionary adaptation can shape inhibitive processing in particular and behavioral selection in general. More specifically, results indicate that both the level of inhibition that an organism can exert and the size of neural populations dedicated to inhibition contribute to successful detour navigation. According to our results, both factors help to facilitate detour behavior, but the latter (i.e., larger neural populations) appears to specifically reduce behavioral variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660104PMC
http://dx.doi.org/10.3389/fnsys.2021.752219DOI Listing

Publication Analysis

Top Keywords

direct approach
8
neural populations
8
detour
4
approach detour
4
detour comparative
4
comparative model
4
model inhibition
4
neural
4
inhibition neural
4
neural ensemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!