The membrane responses upon activation of GABA(A) receptors critically depend on the intracellular Cl concentration ([Cl]), which is maintained by a set of transmembrane transporters for Cl. During neuronal development, but also under several pathophysiological conditions, the prevailing expression of the Cl loader NKCC1 and the low expression of the Cl extruder KCC2 causes elevated [Cl], which result in depolarizing GABAergic membrane responses. However, depolarizing GABAergic responses are not necessarily excitatory, as GABA(A) receptors also reduces the input resistance of neurons and thereby shunt excitatory inputs. To summarize our knowledge on the effect of depolarizing GABA responses on neuronal excitability, this review discusses theoretical considerations and experimental studies illustrating the relation between GABA conductances, GABA reversal potential and neuronal excitability. In addition, evidences for the complex spatiotemporal interaction between depolarizing GABAergic and glutamatergic inputs are described. Moreover, mechanisms that influence [Cl] beyond the expression of Cl transporters are presented. And finally, several and studies that directly investigated whether GABA mediates excitation or inhibition during early developmental stages are summarized. In summary, these theoretical considerations and experimental evidences suggest that GABA can act as inhibitory neurotransmitter even under conditions that maintain substantial depolarizing membrane responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651619 | PMC |
http://dx.doi.org/10.3389/fnmol.2021.747835 | DOI Listing |
Front Mol Neurosci
December 2024
Axonis Therapeutics Inc., Boston, MA, United States.
KCC2 is CNS neuron-specific chloride extruder, essential for the establishment and maintenance of the transmembrane chloride gradient, thereby enabling synaptic inhibition within the CNS. Herein, we highlight KCC2 hypofunction as a fundamental and conserved pathology contributing to neuronal circuit excitation/inhibition (E/I) imbalances that underly epilepsies, chronic pain, neuro-developmental/-traumatic/-degenerative/-psychiatric disorders. Indeed, downstream of both acquired and genetic factors, multiple pathologies (e.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking.
View Article and Find Full Text PDFeNeuro
December 2024
Neuroscience Program, Lafayette College, Easton, Pennsylvania 18042
J Neurophysiol
December 2024
Center For Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States.
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!