Variants in the Gene in Families with Autosomal Recessive Congenital Ichthyosis Reveal Clinical Significance.

Mol Syndromol

Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Science, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.

Published: October 2021

The term autosomal recessive congenital ichthyosis (ARCI) is the subgroup of ichthyosis, which describes a highly heterogeneous group of genetic disorders of the skin characterized by cornification and defective keratinocytes differentiation associated with mutations in at least 14 genes including . To study the molecular basis of the Pakistani kindreds (A and B) affected by ARCI, whole-exome sequencing (WES) in the DNA samples of affected members was performed followed by Sanger sequencing of the candidate gene to hunt down the disease-causing sequence variant/s. WES data analysis led to the identification of a novel nonsense sequence variant (c.892C>T; p.Arg298*, family A) and a recurrent missense variant (c.102C>A; p.Asp34Glu, family B) in mapped to the ARCI locus in chromosome 6p21.31. Validation and cosegregation analysis of the variants in the remaining family members of the respective families were confirmed by Sanger sequencing. The current investigation expands the spectrum of mutations and helps establish the proper clinico-genetic diagnosis and correct genotype-phenotype correlation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613620PMC
http://dx.doi.org/10.1159/000516943DOI Listing

Publication Analysis

Top Keywords

autosomal recessive
8
recessive congenital
8
congenital ichthyosis
8
sanger sequencing
8
variants gene
4
gene families
4
families autosomal
4
ichthyosis reveal
4
reveal clinical
4
clinical significance
4

Similar Publications

Methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessive genetic disorder caused by mutations in the gene, leading to a variety of clinical manifestations. In October 2022, the Second Xiangya Hospital of Central South University admitted a 21-year-old male patient with neuropsychiatric disorders, presenting primarily with cognitive decline, limb tremors, abnormal mental and behavioral symptoms, seizures, and gait disturbances. These symptoms had gradually developed over 5 years, worsening significantly in the past year.

View Article and Find Full Text PDF

Coexistence of phenylketonuria and tyrosinemia type 3: challenges in the dietary management.

J Pediatr Endocrinol Metab

January 2025

Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.

Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).

View Article and Find Full Text PDF

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Fetal Tetra-Amelia Birth: A Case Report.

Case Rep Obstet Gynecol

December 2024

Department of Obstetrics and Gynecology, Jimma University School of Medicine, Jimma, Ethiopia.

Fetal limb anomaly presentation varies greatly. It can present as amelia (complete absence of skeletal part of one or more limb), meromelia (partial absence of skeletal part of one or more limb), phocomelia (only rudimentary limb formed), and minor limb disorders like polydactyly. The complete absence of the four fetal limbs is extremely rare.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) is an autosomal recessive genetic blood disorder. It affects up to 2.6% of the Kingdom of Saudi Arabia population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!