Automatic early diagnosis of COVID-19 with computer-aided tools is crucial for disease treatment and control. Radiology images of COVID-19 and other lung diseases like bacterial pneumonia, viral pneumonia have common features. Thus, this similarity makes it difficult for radiologists to detect COVID-19 cases. A reliable method for classifying non-COVID-19 and COVID-19 chest x-ray images could be useful to reduce triage process and diagnose. In this study, we develop an original framework (HANDEFU) that supports handcrafted, deep, and fusion-based feature extraction techniques for feature engineering. The user interactively builds any model by selecting feature extraction technique and classification method through the framework. Any feature extraction technique and model could then be added dynamically to the library of software at a later time upon request. The novelty of this study is that image preprocessing and diverse feature extraction and classification techniques are assembled under an original framework. In this study, this framework is utilized for diagnosing COVID-19 from chest x-ray images on an open-access dataset. All of the experimental results and performance evaluations on this dataset are performed with this software. In experimental studies, COVID-19 prediction is performed by 27 different models through software. The superior performance with accuracy of 99.36% is obtained by LBP+SVM model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646664 | PMC |
http://dx.doi.org/10.1002/cpe.6725 | DOI Listing |
Sensors (Basel)
December 2024
LAPLACE Laboratory-UMR5213, National Polytechnic Institute of Toulouse, 31077 Toulouse, France.
This paper introduces a novel methodology for evaluating communication performance in rotating electric machines using Received Signal Strength Indication (RSSI) measurements coupled with artificial intelligence. The proposed approach focuses on assessing the quality of wireless signals in the complex, dynamic environment inside these machines, where factors like reflections, metallic surfaces, and rotational movements can significantly impact communication. RSSI is used as a key parameter to monitor real-time signal behavior, enabling a detailed analysis of communication reliability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
With the advancement of service robot technology, the demand for higher boundary precision in indoor semantic segmentation has increased. Traditional methods of extracting Euclidean features using point cloud and voxel data often neglect geodesic information, reducing boundary accuracy for adjacent objects and consuming significant computational resources. This study proposes a novel network, the Euclidean-geodesic network (EGNet), which uses point cloud-voxel-mesh data to characterize detail, contour, and geodesic features, respectively.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer and Artificial Intelligence, Wuhan Textile Unversity, Wuhan 430200, China.
Currently, fabric defect detection methods predominantly rely on CNN models. However, due to the inherent limitations of CNNs, such models struggle to capture long-distance dependencies in images and fail to accurately detect complex defect features. While Transformers excel at modeling long-range dependencies, their quadratic computational complexity poses significant challenges.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Automation, Xiamen University, Xiamen 361102, China.
Recent advancements in the field of object tracking have been notably influenced by Siamese-based trackers, which have demonstrated considerable progress in their performance and application. Researchers frequently emphasize the precision of trackers, yet they tend to neglect the associated complexity. This oversight can restrict real-time performance, rendering these trackers inadequate for specific applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!