Coronavirus disease, Covid19, pandemic has a great effect on human heath worldwide since it was first detected in late 2019. A clear understanding of the structure of the available Covid19 datasets might give the healthcare provider a better understanding of identifying some of the cases at an early stage. In this article, we will be looking into a Covid19 Mexican Patients' Dataset (Covid109MPD), and we will apply number of machine learning algorithms on the dataset to select the best possible classification algorithm for the death and survived cases in Mexico, then we will study the performance of the enhancement of the specified classifiers in term of their features selection in order to be able to predict sever, and or death, cases from the available dataset. Results show that J48 classifier gives the best classification accuracy with 94.41% and RMSE = 0.2028 and ROC = 0.919, compared to other classifiers, and when using feature selection method, J48 classifier can predict a surviving Covid19MPD case within 94.88% accuracy, and by using only 10 out of the total 19 features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646298 | PMC |
http://dx.doi.org/10.1002/cpe.6675 | DOI Listing |
Plants (Basel)
January 2025
Maize Research Institute Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia.
Driven by the growing demands for plant-based protein in Europe and attempts of soybean breeding programs to improve the productivity of created varieties, this study aimed to enhance genetic resource utilization efficiency by providing information relevant to well-focused breeding targets. A set of 90 accessions was subjected to a comprehensive assessment of genetic diversity in a soybean working collection using three marker types: morphological descriptors, agronomic traits, and SSRs. Genotype grouping patterns varied among the markers, displaying the best congruence with pedigree data and maturity for SSRs and agronomic traits, respectively.
View Article and Find Full Text PDFPathogens
January 2025
Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, BC, Mexico.
is the parasite responsible for Chagas disease, which has a significant amount of genetic diversification among the species complex. Many efforts are routinely made to characterize the genetic lineages of circulating in a particular geographic area. However, the genetic loci used to typify the genetic lineages of have not been consistent between studies.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Data Science, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
Skin cancer accounts for over 40% of all cancer diagnoses worldwide. However, accurately diagnosing skin cancer remains challenging for dermatologists, as multiple types of skin cancer often appear visually similar. The diagnostic accuracy of dermatologists ranges between 62% and 80%.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Bureau of Emergency Management of Pingquan City, Pingquan 067500, China.
Building type information is widely used in various fields, such as disaster management, urbanization studies, and population modelling. Few studies have been conducted on fine-grained building classification in rural areas using China's Gaofen-7 (GF-7) high-resolution stereo mapping satellite data. In this study, we employed a two-stage method combining supervised classification and unsupervised clustering to classify buildings in the rural area of Pingquan, northern China, based on building footprints, building heights, and multispectral information extracted from GF-7 data.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Earth, Environment and Geospatial Sciences, Saint Louis University, Saint Louis, MO 63108, USA.
Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!