The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2021.0079DOI Listing

Publication Analysis

Top Keywords

prebiotic chemistry
12
"biosignature threshold"
8
life detection
8
chemical systems
8
prebiotic
7
chemistry
5
chemical
5
determining "biosignature
4
threshold" life
4
detection biotic
4

Similar Publications

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences.

View Article and Find Full Text PDF

Advances in the preparation, applications, challenges, and future trends of polysaccharide-based gels as food-grade delivery systems for probiotics: A review.

Compr Rev Food Sci Food Saf

January 2025

Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.

Probiotics are highly regarded for their multiple functions, such as regulating gut health, enhancing the immune system, and preventing chronic diseases. However, their stability in harsh environments and targeted release remain significant challenges. Therefore, exploring effective protection and delivery strategies to ensure targeted release of probiotics is critically important.

View Article and Find Full Text PDF

Vitiligo is a chronic autoimmune pigmentation disorder shaped by a complex interplay of genetic predispositions and environmental triggers. While conventional therapies-phototherapy, corticosteroids, and immunosuppressants-can be effective, their benefits are often partial and temporary, with recurrence common once treatment stops. As such, there is increasing interest in exploring complementary approaches that may offer a more sustainable impact.

View Article and Find Full Text PDF

Microorganisms synthesize diverse types of exopolysaccharides (EPSs). EPSs with varying structural and physical properties can demonstrate unique health benefits, which allow for their tailored applications as functional foods such as prebiotics. Levan, a fructose-based EPS, is gaining considerable attention as an effective prebiotic to support the growth of beneficial gut bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!