Purpose: This study aimed to evaluate the effect of speech recognition performance, working memory capacity (WMC), and a noise reduction algorithm (NRA) on listening effort as measured with pupillometry in cochlear implant (CI) users while listening to speech in noise.
Method: Speech recognition and pupil responses (peak dilation, peak latency, and release of dilation) were measured during a speech recognition task at three speech-to-noise ratios (SNRs) with an NRA in both on and off conditions. WMC was measured with a reading span task. Twenty experienced CI users participated in this study.
Results: With increasing SNR and speech recognition performance, (a) the peak pupil dilation decreased by only a small amount, (b) the peak latency decreased, and (c) the release of dilation after the sentences increased. The NRA had no effect on speech recognition in noise or on the peak or latency values of the pupil response but caused less release of dilation after the end of the sentences. A lower reading span score was associated with higher peak pupil dilation but was not associated with peak latency, release of dilation, or speech recognition in noise.
Conclusions: In CI users, speech perception is effortful, even at higher speech recognition scores and high SNRs, indicating that CI users are in a chronic state of increased effort in communication situations. The application of a clinically used NRA did not improve speech perception, nor did it reduce listening effort. Participants with a relatively low WMC exerted relatively more listening effort but did not have better speech reception thresholds in noise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1044/2021_JSLHR-21-00230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!