In water, the surfactant dioctyl sulfosuccinate (Aerosol-OT or AOT) exhibits diverse aggregate structures, ranging from micelles to lamella. An atomic-level understanding, however, of the formation and structure of these aggregates is lacking. Herein, using atomistic molecular dynamics (MD) with microsecond-long simulations, self-assembly of AOT in water is studied for concentrations of 1, 7.2, and 20 wt % at 293 K and for 7.2 wt % at 353 K. Assembly proceeds through stepwise association and dissociation of single AOT molecules, and the fusion and fission of AOT clusters. At 293 K, AOT self-assembles into either (i) spherical micelles (1 wt %), (ii) biphasic systems consisting of rod-like and prolate spheroidal micelles (7.2 wt %), or (iii) bilayers (20 wt %). We hypothesize that the observed rod-like structure is a precursor to lamellar microdomains found experimentally in biphasic dispersions. Increasing temperature to 353 K at 7.2 wt % results in a system consisting of prolate micelles but no rod-like micelles. Simulated phase behavior agrees with previously published experimental observations. Individual aggregates formed during self-assembly are identified using graph theory. Structural metrics of these aggregates like the radius of gyration, shape anisotropy, and prolateness are presented. Trends in structural metrics quantitatively reflect how shapes and sizes of AOT aggregates vary with surfactant concentration and temperature. These simulations provide deeper insight into open questions in the scientific community and demonstrate a method to generate physics-based micelle structures that can be used to rationalize experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c07136 | DOI Listing |
JACS Au
December 2024
Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).
View Article and Find Full Text PDFFront Physiol
December 2024
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Electronic address:
Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Armilla 18100, Granada, Spain. Electronic address:
The nacre formation process is a fascinating phenomenon involving mineral phase transformations, self-assembly processes, and protein-mineral interactions, resulting in a hierarchical structure that exhibits outstanding mechanical properties. However, this process is only partially known, and many aspects of nacre structure are not well understood, especially at the molecular scale. To understand the interplay between components-aragonite, protein and chitin-of the structure of nacre observed experimentally, we investigate the interactions of a peptide that is part of the protein lustrin A, identified in the nacreous layer of the shell of the abalone Haliotis rufescens, with the (001) crystal surface of aragonite and the chitin molecule.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
TCS Research, Sahyadri Park 2, Rajiv Gandhi Infotech Park, Hinjewadi Phase 3, Pune 411057, India.
Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!