A Robust Hierarchical MXene/Ni/Aluminosilicate Glass Composite for High-Performance Microwave Absorption.

Adv Sci (Weinh)

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Published: February 2022

The 2D titanium carbide MXene with both extraordinary electromagnetic attenuation and elastic properties has shown great potential as the building block for constructing mechanically robust microwave absorbing composites (MACs). However, the weak thermal stability has inhibited the successful incorporation of MXene into the inorganic MACs matrix so far. Herein, an ultralow temperature sintering strategy to fabricate a hierarchical aluminosilicate glass composite is demonstrated by using EMT zeolite as starting powder, which can not only endow the composites with high sinterability, but also facilitate the alignment of MXene in the glass matrix. Accordingly, the highly oriented MXene and mesoporous structure can effectively reduce the conduction loss in the out-of-plane direction while maintaining its large polarization loss. Meanwhile, the in situ formed Ni nanoparticles via ion exchange serve as a synergistic modulator to further improve the attenuation capability and impedance matching of composite, resulting in a low reflection loss of -59.5 dB in X band and general values below -20 dB with a low fitting thickness from 4 to 18 GHz. More attractively, such a delicate structure also gives the composite a remarkable fracture strength and contact-damage-resistance, which qualifies the mesoporous glass composite as a structural MACs with a superior comprehensive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811826PMC
http://dx.doi.org/10.1002/advs.202104163DOI Listing

Publication Analysis

Top Keywords

glass composite
12
composite
5
robust hierarchical
4
hierarchical mxene/ni/aluminosilicate
4
glass
4
mxene/ni/aluminosilicate glass
4
composite high-performance
4
high-performance microwave
4
microwave absorption
4
absorption titanium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!