Background And Purpose: Bruton's TK (BTK) is a non-receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B-cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti-inflammatory properties.

Experimental Approach: We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan-induced peritonitis as model systems.

Key Results: Using the zymosan-induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6C monocytes, but not Ly6C monocyte recruitment to the peritoneum. X-linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF-κB activity and Akt signalling.

Conclusion And Implications: Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF-κB and Akt activity in tissue resident macrophages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361009PMC
http://dx.doi.org/10.1111/bph.15778DOI Listing

Publication Analysis

Top Keywords

inhibition btk
16
neutrophils monocytes
12
btk
10
myeloid cell
8
cell recruitment
8
myeloid cells
8
cells neutrophils
8
monocytes macrophages
8
role btk
8
zymosan-induced peritonitis
8

Similar Publications

Introduction: Advances in the early detection and treatment of cancer have significantly improved the prognosis of patients with cancer. Tyrosine kinase inhibitors (TKIs) are effective targeted treatments for various malignancies that act by inhibiting kinase activity. Although these drugs share a common mechanism of action, they differ in their targeted kinases, pharmacokinetics, and side effects.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B cells due to constitutive B-cell receptor (BCR) signaling, leading to apoptosis resistance and increased proliferation. This study evaluates the effects of the Bruton Tyrosine Kinase (BTK) inhibitor ibrutinib on the molecular composition, clonality, and kinetics of B cells during treatment in CLL patients. Employing a multi-omics approach of up to 3.

View Article and Find Full Text PDF

Unlabelled: In Diffuse Large B-cell Lymphoma (DLBCL), elevated anti-apoptotic BCL2-family proteins (e.g., MCL1, BCL2, BCLXL) and NF-κB subunits (RelA, RelB, cRel) confer poor prognosis.

View Article and Find Full Text PDF

Introduction: In August 2023, hybrid sturgeons () cultured in Sichuan, China, showed infectious disease symptoms, including ulcers, liver and spleen nodules, and high mortality rates.

Methods: Pathogenic bacteria were isolated from the liver of diseased sturgeons and analyzed for their phenotypic and molecular traits. Furthermore, iridovirus-specific TaqMan real-time PCR (RT-PCR) analyses were conducted.

View Article and Find Full Text PDF

Bruton tyrosine kinase promotes wound healing after myocardial infarction by inhibiting the transcription of u-PA.

Free Radic Biol Med

December 2024

Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.

Backgrounds: Bruton tyrosine kinase (BTK), which is highly expressed in immune cells, plays a critical role in regulating the function of macrophages. A growing body of evidence has demonstrated that the accumulation of macrophages in cardiac tissue after myocardial infarction (MI) significantly affects wound healing and ventricular remodeling during the early phase of repair after MI. However, the role of BTK in cardiac repair post-MI, especially in macrophage-mediated repair, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!